Speech Enhancement Using Joint DNN-NMF Model Learned with Multi-Objective Frequency Differential Spectrum Loss Function

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC IET Signal Processing Pub Date : 2024-01-24 DOI:10.1049/2024/8881007
Matin Pashaian, Sanaz Seyedin
{"title":"Speech Enhancement Using Joint DNN-NMF Model Learned with Multi-Objective Frequency Differential Spectrum Loss Function","authors":"Matin Pashaian,&nbsp;Sanaz Seyedin","doi":"10.1049/2024/8881007","DOIUrl":null,"url":null,"abstract":"<div>\n <p>We propose a multi-objective joint model of non-negative matrix factorization (NMF) and deep neural network (DNN) with a new loss function for speech enhancement. The proposed loss function (<i>L</i><sub>MOFD</sub>) is a weighted combination of a frequency differential spectrum mean squared error (MSE)-based loss function (<i>L</i><sub>FD</sub>) and a multi-objective MSE loss function (<i>L</i><sub>MO</sub>). The conventional MSE loss function computes the discrepancy between the estimated speech and clean speech across all frequencies, disregarding the process of changing amplitude in the frequency domain which contains valuable information. The differential spectrum representation retains spectral peaks that carry important information. Using this representation helps to ensure that this information in the speech signal is reserved. Also, on the other hand, noise spectra typically have a flat shape and as the differential operation makes the flat spectral partly close to zero, the differential spectrum is resistant to noises with smooth structures. Thus, we propose using a frequency-differentiated loss function that considers the magnitude spectrum differentiations between the neighboring frequency bins in each time frame. This approach maintains the spectrum variations of the objective signal in the frequency domain, which can effectively reduce the noise deterioration effects. The multi-objective MSE term (<i>L</i><sub>MO</sub>) is a combined two-loss function related to the NMF coefficients which are the intermediate output targets, and the original spectral signals as the actual output targets. The use of encoded NMF coefficients as low-dimensional structural features for DNN serves as prior knowledge and helps the learning process. <i>L</i><sub>MO</sub> is used beside <i>L</i><sub>FD</sub> to take advantage of both the properties of the original and the differential spectrum in the training loss function. Moreover, a DNN-based noise classification and fusion strategy (NCF) is proposed to exploit a discriminative model for noise reduction. The experiments reveal the improvements of the proposed approach compared to the previous methods.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/8881007","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/8881007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a multi-objective joint model of non-negative matrix factorization (NMF) and deep neural network (DNN) with a new loss function for speech enhancement. The proposed loss function (LMOFD) is a weighted combination of a frequency differential spectrum mean squared error (MSE)-based loss function (LFD) and a multi-objective MSE loss function (LMO). The conventional MSE loss function computes the discrepancy between the estimated speech and clean speech across all frequencies, disregarding the process of changing amplitude in the frequency domain which contains valuable information. The differential spectrum representation retains spectral peaks that carry important information. Using this representation helps to ensure that this information in the speech signal is reserved. Also, on the other hand, noise spectra typically have a flat shape and as the differential operation makes the flat spectral partly close to zero, the differential spectrum is resistant to noises with smooth structures. Thus, we propose using a frequency-differentiated loss function that considers the magnitude spectrum differentiations between the neighboring frequency bins in each time frame. This approach maintains the spectrum variations of the objective signal in the frequency domain, which can effectively reduce the noise deterioration effects. The multi-objective MSE term (LMO) is a combined two-loss function related to the NMF coefficients which are the intermediate output targets, and the original spectral signals as the actual output targets. The use of encoded NMF coefficients as low-dimensional structural features for DNN serves as prior knowledge and helps the learning process. LMO is used beside LFD to take advantage of both the properties of the original and the differential spectrum in the training loss function. Moreover, a DNN-based noise classification and fusion strategy (NCF) is proposed to exploit a discriminative model for noise reduction. The experiments reveal the improvements of the proposed approach compared to the previous methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用利用多目标频谱差分损失函数学习的 DNN-NMF 联合模型进行语音增强
我们提出了一种非负矩阵因式分解(NMF)和深度神经网络(DNN)的多目标联合模型,并为语音增强提供了一种新的损失函数。所提出的损失函数(LMOFD)是基于频谱均方误差(MSE)的损失函数(LFD)和多目标 MSE 损失函数 LMO 的加权组合。传统的 MSE 损失函数计算的是估计语音与干净语音在所有频率上的差异,忽略了频域中包含有价值信息的振幅变化过程。微分频谱表示法保留了包含重要信息的频谱峰值。使用这种表示法有助于确保保留语音信号中的这些信息。此外,另一方面,噪声频谱通常具有平坦的形状,由于差分操作会使平坦频谱部分接近零,因此差分频谱对具有平滑结构的噪声具有抵抗力。因此,我们建议使用频率差分损失函数,该函数考虑了每个时间帧中相邻频带之间的幅度频谱差分。这种方法保持了目标信号在频域中的频谱变化,可以有效降低噪声劣化效应。多目标 MSE 项 LMO 是与作为中间输出目标的 NMF 系数和作为实际输出目标的原始频谱信号相关的两个损失函数的组合。将编码的 NMF 系数作为 DNN 的低维结构特征,可作为先验知识,有助于学习过程。LMO 与 LFD 并用,在训练损失函数中利用了原始频谱和差分频谱的特性。此外,还提出了一种基于 DNN 的噪声分类和融合策略(NCF),以利用判别模型来降低噪声。实验表明,与之前的方法相比,所提出的方法有了很大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Signal Processing
IET Signal Processing 工程技术-工程:电子与电气
CiteScore
3.80
自引率
5.90%
发文量
83
审稿时长
9.5 months
期刊介绍: IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more. Topics covered by scope include, but are not limited to: advances in single and multi-dimensional filter design and implementation linear and nonlinear, fixed and adaptive digital filters and multirate filter banks statistical signal processing techniques and analysis classical, parametric and higher order spectral analysis signal transformation and compression techniques, including time-frequency analysis system modelling and adaptive identification techniques machine learning based approaches to signal processing Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques theory and application of blind and semi-blind signal separation techniques signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals direction-finding and beamforming techniques for audio and electromagnetic signals analysis techniques for biomedical signals baseband signal processing techniques for transmission and reception of communication signals signal processing techniques for data hiding and audio watermarking sparse signal processing and compressive sensing Special Issue Call for Papers: Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf
期刊最新文献
The Effect of Antenna Place Codes for Reducing Sidelobes of SIAR and Frequency Diverse Array Sensors A Variational Bayesian Truncated Adaptive Filter for Uncertain Systems with Inequality Constraints A Novel Approach of Optimal Signal Streaming Analysis Implicated Supervised Feedforward Neural Networks Energy Sharing and Performance Bounds in MIMO DFRC Systems: A Trade-Off Analysis A Labeled Multi-Bernoulli Filter Based on Maximum Likelihood Recursive Updating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1