Optimization Thickness of Photoanode Layer and Membrane as Electrolyte Trapping Medium for Improvement Dye-Sensitized Solar Cell Performance

Q2 Pharmacology, Toxicology and Pharmaceutics Science and Technology Indonesia Pub Date : 2024-01-22 DOI:10.26554/sti.2024.9.1.7-16
N. Kusumawati, P. Setiarso, S. Muslim, Qonita Arky Hafidha, Sinta Anjas Cahyani, Fadlurachman Faizal Fachrirakarsie
{"title":"Optimization Thickness of Photoanode Layer and Membrane as Electrolyte Trapping Medium for Improvement Dye-Sensitized Solar Cell Performance","authors":"N. Kusumawati, P. Setiarso, S. Muslim, Qonita Arky Hafidha, Sinta Anjas Cahyani, Fadlurachman Faizal Fachrirakarsie","doi":"10.26554/sti.2024.9.1.7-16","DOIUrl":null,"url":null,"abstract":"Dye-Sensitized Solar Cells (DSSC) are photovoltaic devices that contain a dye that acts as a solar light acceptor. The use of dyesensitized solar cells to solve increasing energy demand and environmental problems still results in low efficiency values. In this study, optimization of DSSC components was carried out to increase DSSC efficiency by varying the thickness of the titanium dioxide (TiO2) semiconductor photoanode layer, polyvinylidene fluoride (PVDF) trap electrolyte membrane, and polyvinylidene fluoride nanofiber (PVDF NF) to obtain the optimum thickness. Scanning Electron Microscope (SEM) results of membrane thickness variation and titanium dioxide (TiO2) semiconductor photoanode coating showed the formation of nanofiber fibers composed of three-dimensional, porous, and diameter networks connected to the PVDF NF membrane. The increase in density and decrease in pore size, along with an increase in thickness and cracking as the TiO2 photoanode semiconductor layer increases, affect the electron transport rate of the DSSC. The higher particle density level will inhibit the electron transport rate, so it can reduce the efficiency of DSSC. The optimum thickness of the TiO2 semiconductor layer and PVDF NF electrolyte membrane of 0.20 mm and 0.35 mm can produce values, voltage, fill factor current density, and electrical efficiency of 500 mV, 2.7 x 10−3 mA.cm−2, 1.80%, and 2.40%, respectively.","PeriodicalId":21644,"journal":{"name":"Science and Technology Indonesia","volume":"90 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26554/sti.2024.9.1.7-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Dye-Sensitized Solar Cells (DSSC) are photovoltaic devices that contain a dye that acts as a solar light acceptor. The use of dyesensitized solar cells to solve increasing energy demand and environmental problems still results in low efficiency values. In this study, optimization of DSSC components was carried out to increase DSSC efficiency by varying the thickness of the titanium dioxide (TiO2) semiconductor photoanode layer, polyvinylidene fluoride (PVDF) trap electrolyte membrane, and polyvinylidene fluoride nanofiber (PVDF NF) to obtain the optimum thickness. Scanning Electron Microscope (SEM) results of membrane thickness variation and titanium dioxide (TiO2) semiconductor photoanode coating showed the formation of nanofiber fibers composed of three-dimensional, porous, and diameter networks connected to the PVDF NF membrane. The increase in density and decrease in pore size, along with an increase in thickness and cracking as the TiO2 photoanode semiconductor layer increases, affect the electron transport rate of the DSSC. The higher particle density level will inhibit the electron transport rate, so it can reduce the efficiency of DSSC. The optimum thickness of the TiO2 semiconductor layer and PVDF NF electrolyte membrane of 0.20 mm and 0.35 mm can produce values, voltage, fill factor current density, and electrical efficiency of 500 mV, 2.7 x 10−3 mA.cm−2, 1.80%, and 2.40%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化光阳极层厚度和作为电解质捕集介质的薄膜,提高染料敏化太阳能电池性能
染料敏化太阳能电池(DSSC)是一种包含染料的光电设备,染料可作为太阳能光接收器。使用染料敏化太阳能电池来解决日益增长的能源需求和环境问题,但其效率值仍然很低。本研究对 DSSC 组件进行了优化,通过改变二氧化钛(TiO2)半导体光阳极层、聚偏二氟乙烯(PVDF)阱电解质膜和聚偏二氟乙烯纳米纤维(PVDF NF)的厚度来获得最佳厚度,从而提高 DSSC 的效率。扫描电子显微镜(SEM)对膜厚度变化和二氧化钛(TiO2)半导体光阳极涂层的观察结果表明,在 PVDF NF 膜上形成了由三维、多孔和直径网络连接的纳米纤维。随着 TiO2 光阳极半导体层的增加,密度的增加和孔径的减小,以及厚度和裂纹的增加,都会影响 DSSC 的电子传输速率。较高的颗粒密度会抑制电子传输速率,从而降低 DSSC 的效率。TiO2 半导体层和 PVDF NF 电解质膜的最佳厚度分别为 0.20 mm 和 0.35 mm,可产生的数值、电压、填充因子电流密度和电效率分别为 500 mV、2.7 x 10-3 mA.cm-2、1.80% 和 2.40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science and Technology Indonesia
Science and Technology Indonesia Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (miscellaneous)
CiteScore
1.80
自引率
0.00%
发文量
72
审稿时长
8 weeks
期刊最新文献
Modification of Indonesian Kaolinite-Based Silica Coarse (SC) for RNA Extraction Method of SARS-CoV-2 An Updated Water Masses Stratification of Indonesian Maritime Continent (IMC) Attributed to Normal and ENSO Conditions by Argo Float Anti-Inflammatory Activity and Phytochemical Profile from the Leaves of the Mangrove Sonneratia caseolaris (L.) Engl. for Future Drug Discovery Results on Toeplitz Determinants for Subclasses of Analytic Functions Associated to q-Derivative Operator LSTM-CNN Hybrid Model Performance Improvement with BioWordVec for Biomedical Report Big Data Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1