Manisha Bansal, Muireann Anna de h-Óra, Wasim Akram, Samir Kumar Giri, Weiwei Li, Judith L. MacManus-Driscoll, Tuhin Maity
{"title":"Tuneable Vertical Hysteresis Loop Shift in Exchange Coupled La0.67Sr0.33MnO3-SrRuO3 Bilayer","authors":"Manisha Bansal, Muireann Anna de h-Óra, Wasim Akram, Samir Kumar Giri, Weiwei Li, Judith L. MacManus-Driscoll, Tuhin Maity","doi":"10.1002/apxr.202300129","DOIUrl":null,"url":null,"abstract":"<p>Harnessing extra degrees of freedom at the heterostructure interface is of crucial importance to bring additional functionalities in modern spintronic devices. Here, a vertical hysteresis loop shift (vertical bias) is demonstrated in an exchange biased system of ferromagnetic thin film heterostructure of La<sub>0.67</sub>Sr<sub>0.33</sub>MnO<sub>3</sub> (10 nm)-SrRuO<sub>3</sub> (SRO) (20 nm), after field cooling with ±1 T below 100 K close to the Curie temperature (<i>T</i><sub>C</sub>) ≈125 K of SRO and loop sweeping under ±1 T field. Besides, a positive exchange bias (H<sub>EB</sub>) is also observed below <i>T</i><sub>C</sub> ≈125 K showing a maximum ≈11 mT at 2 K. The vertical shift is modeled closely using micromagnetic simulations and the layers’ thickness dependency is demonstrated. The reason for the shift is attributed to the simultaneous role of the interfacial antiferromagnetic interaction and the hard anisotropy of SRO against the Zeeman energy. Finally, from the experimental and simulation results, a generalized model of controllable and tunable vertical shift is proposed applicable for other material systems possessing glassy phases, uncompensated/canted spins, absent interfacial exchange coupling, etc., and hence can be informative for the use of vertical shift in future spintronic devices.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202300129","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202300129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Harnessing extra degrees of freedom at the heterostructure interface is of crucial importance to bring additional functionalities in modern spintronic devices. Here, a vertical hysteresis loop shift (vertical bias) is demonstrated in an exchange biased system of ferromagnetic thin film heterostructure of La0.67Sr0.33MnO3 (10 nm)-SrRuO3 (SRO) (20 nm), after field cooling with ±1 T below 100 K close to the Curie temperature (TC) ≈125 K of SRO and loop sweeping under ±1 T field. Besides, a positive exchange bias (HEB) is also observed below TC ≈125 K showing a maximum ≈11 mT at 2 K. The vertical shift is modeled closely using micromagnetic simulations and the layers’ thickness dependency is demonstrated. The reason for the shift is attributed to the simultaneous role of the interfacial antiferromagnetic interaction and the hard anisotropy of SRO against the Zeeman energy. Finally, from the experimental and simulation results, a generalized model of controllable and tunable vertical shift is proposed applicable for other material systems possessing glassy phases, uncompensated/canted spins, absent interfacial exchange coupling, etc., and hence can be informative for the use of vertical shift in future spintronic devices.
利用异质结构界面的额外自由度对于为现代自旋电子器件带来额外功能至关重要。在这里,La0.67Sr0.33MnO3(10 nm)-SrRuO3(SRO)(20 nm)铁磁薄膜异质结构的交换偏压系统在接近 SRO 居里温度(TC)≈125 K 的 100 K 以下进行±1 T 场冷却,并在±1 T 场扫描环路后,显示出垂直磁滞环路偏移(垂直偏压)。此外,在 TC≈125 K 以下还观察到正交换偏压 (HEB),在 2 K 时最大值≈11 mT。产生这种偏移的原因是界面反铁磁相互作用和 SRO 的硬各向异性对泽曼能量的同时作用。最后,根据实验和模拟结果,我们提出了一个可控和可调垂直偏移的广义模型,该模型适用于其他具有玻璃相、未补偿/倾斜自旋、无界面交换耦合等特性的材料系统,因此可为在未来的自旋电子器件中使用垂直偏移提供参考。