首页 > 最新文献

Advanced Physics Research最新文献

英文 中文
Masthead (Adv. Phys. Res. 12/2024) 刊头 (Adv. Phys. Res. 12/2024)
Pub Date : 2024-12-11 DOI: 10.1002/apxr.202470028
{"title":"Masthead (Adv. Phys. Res. 12/2024)","authors":"","doi":"10.1002/apxr.202470028","DOIUrl":"https://doi.org/10.1002/apxr.202470028","url":null,"abstract":"","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202470028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological Insulator Nanowires Made by AFM Nanopatterning: Fabrication Process and Ultra Low-Temperature Transport Properties (Adv. Phys. Res. 12/2024)
Pub Date : 2024-12-11 DOI: 10.1002/apxr.202470027
Dmitry S. Yakovlev, Aleksei V. Frolov, Ivan A. Nazhestkin, Alexei G. Temiryazev, Andrey P. Orlov, Jonathan Shvartzberg, Sergey E. Dizhur, Vladimir L. Gurtovoi, Razmik Hovhannisyan, Vasily S. Stolyarov

Atomic Force Lithography

The study 2400108 by Dmitry Yakovlev and co-workers introduces a novel approach to using atomic force microscopy (AFM) pulse force nanolithography to fabricate Bi2Se3 nanoribbons with high precision. This allows control over their dimensions and prevents contamination from standard electron beam lithography or reactive ion etching. The illustration shows a pie of complex multilayer heterostructures cut into small pieces by using atomic force lithography with an accuracy of a few nanometers. The results also reveal insights into electronic structure, conductance, and phase coherence in TIs, with thermal excitation and bias current affecting coherence length. This new AFM technique offers a scalable and precise approach.

{"title":"Topological Insulator Nanowires Made by AFM Nanopatterning: Fabrication Process and Ultra Low-Temperature Transport Properties (Adv. Phys. Res. 12/2024)","authors":"Dmitry S. Yakovlev,&nbsp;Aleksei V. Frolov,&nbsp;Ivan A. Nazhestkin,&nbsp;Alexei G. Temiryazev,&nbsp;Andrey P. Orlov,&nbsp;Jonathan Shvartzberg,&nbsp;Sergey E. Dizhur,&nbsp;Vladimir L. Gurtovoi,&nbsp;Razmik Hovhannisyan,&nbsp;Vasily S. Stolyarov","doi":"10.1002/apxr.202470027","DOIUrl":"https://doi.org/10.1002/apxr.202470027","url":null,"abstract":"<p><b>Atomic Force Lithography</b></p><p>The study 2400108 by Dmitry Yakovlev and co-workers introduces a novel approach to using atomic force microscopy (AFM) pulse force nanolithography to fabricate Bi<sub>2</sub>Se<sub>3</sub> nanoribbons with high precision. This allows control over their dimensions and prevents contamination from standard electron beam lithography or reactive ion etching. The illustration shows a pie of complex multilayer heterostructures cut into small pieces by using atomic force lithography with an accuracy of a few nanometers. The results also reveal insights into electronic structure, conductance, and phase coherence in TIs, with thermal excitation and bias current affecting coherence length. This new AFM technique offers a scalable and precise approach.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202470027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epithelial Folding Through Local Degradation of an Elastic Basement Membrane Plate
Pub Date : 2024-11-11 DOI: 10.1002/apxr.202400062
K. Yanín Guerra Santillán, Caroline Jantzen, Christian Dahmann, Elisabeth Fischer-Friedrich

Epithelia are polarized layers of cells that line the outer and inner surfaces of organs. At the basal side, the epithelial cell layer is supported by a basement membrane, which is a thin polymeric layer of self-assembled extracellular matrix (ECM) that tightly adheres to the basal cell surface. Proper shaping of epithelial layers is an important prerequisite for the development of healthy organs during the morphogenesis of an organism. Experimental evidence suggests that local degradation of the basement membrane is one of the mechanisms that can drive epithelial folding. However, how folding emerges in the absence of tissue growth remains elusive. Here, we present a coarse-grained plate theory model of the basement membrane that assumes force balance between i) cell-transduced active forces and ii) deformation-induced elastic forces. We verify key assumptions of this model through experiments in the Drosophila wing disc epithelium and demonstrate that the model can explain the emergence of outward epithelial folds upon local plate degradation. The model accounts for local degradation of the basement membrane as a mechanism for the generation of epithelial folds in the absence of epithelial growth.

上皮细胞是排列在器官内外表面的极化细胞层。在基底侧,上皮细胞层由基底膜支撑,基底膜是由细胞外基质(ECM)自组装而成的薄聚合物层,紧紧附着在基底细胞表面。在生物体的形态发生过程中,上皮细胞层的适当塑形是发育健康器官的重要前提。实验证据表明,基底膜的局部降解是驱动上皮折叠的机制之一。然而,在没有组织生长的情况下,折叠是如何出现的仍然难以捉摸。在此,我们提出了基底膜的粗粒度平板理论模型,该模型假定 i)细胞传导的主动力和 ii)变形诱导的弹性力之间的力平衡。我们通过果蝇翼盘上皮细胞的实验验证了该模型的关键假设,并证明该模型可以解释局部基底膜板降解后出现的上皮外褶。该模型将基底膜的局部降解解释为在上皮没有生长的情况下产生上皮褶皱的机制。
{"title":"Epithelial Folding Through Local Degradation of an Elastic Basement Membrane Plate","authors":"K. Yanín Guerra Santillán,&nbsp;Caroline Jantzen,&nbsp;Christian Dahmann,&nbsp;Elisabeth Fischer-Friedrich","doi":"10.1002/apxr.202400062","DOIUrl":"https://doi.org/10.1002/apxr.202400062","url":null,"abstract":"<p>Epithelia are polarized layers of cells that line the outer and inner surfaces of organs. At the basal side, the epithelial cell layer is supported by a basement membrane, which is a thin polymeric layer of self-assembled extracellular matrix (ECM) that tightly adheres to the basal cell surface. Proper shaping of epithelial layers is an important prerequisite for the development of healthy organs during the morphogenesis of an organism. Experimental evidence suggests that local degradation of the basement membrane is one of the mechanisms that can drive epithelial folding. However, how folding emerges in the absence of tissue growth remains elusive. Here, we present a coarse-grained plate theory model of the basement membrane that assumes force balance between i) cell-transduced active forces and ii) deformation-induced elastic forces. We verify key assumptions of this model through experiments in the <i>Drosophila</i> wing disc epithelium and demonstrate that the model can explain the emergence of outward epithelial folds upon local plate degradation. The model accounts for local degradation of the basement membrane as a mechanism for the generation of epithelial folds in the absence of epithelial growth.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400062","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead (Adv. Phys. Res. 11/2024) 刊头 (Adv. Phys. Res. 11/2024)
Pub Date : 2024-11-07 DOI: 10.1002/apxr.202470025
{"title":"Masthead (Adv. Phys. Res. 11/2024)","authors":"","doi":"10.1002/apxr.202470025","DOIUrl":"https://doi.org/10.1002/apxr.202470025","url":null,"abstract":"","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202470025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observation of Thermally Induced Piezomagnetic Switching in Cu2OSeO3 Polymorph Synthesized under High-Pressure (Adv. Phys. Res. 11/2024) 在高压下合成的 Cu2OSeO3 多晶体中观察热诱导压电磁开关(Adv.)
Pub Date : 2024-11-07 DOI: 10.1002/apxr.202470026
Hung-Cheng Wu, Takuya Aoyama, Daisuke Morikawa, Daisuke Okuyama, Kazuhiro Nawa, Wei-Tin Chen, Chan-Hung Lu, Tsung-Wen Yen, Shin-Ming Huang, Stuart Calder, Shuki Torii, Kenya Ohgushi, Masami Terauchi, Taku J. Sato

Piezomagnetic switching

In article number 2400054, Hung-Cheng Wu, Taku J. Sato, and co-workers report the first observation of a finite enhancement of the weak ferromagnetic component in a Cu-based compound under uniaxial stress, providing evidence of the piezomagnetic effect and confirming the magnetic space group determination resolved by neutron diffraction. An intriguing sign change in the piezomagnetic coefficient holds the potential for realizing new functionality in switchable magnetic domains through temperature and pressure manipulation.

压磁开关在文章编号 2400054 中,Hung-Cheng Wu、Taku J. Sato 及其合作者首次观察到铜基化合物在单轴应力作用下弱铁磁成分的有限增强,提供了压磁效应的证据,并证实了通过中子衍射确定的磁空间群。压磁系数有趣的符号变化为通过温度和压力操纵实现可切换磁畴的新功能提供了可能。
{"title":"Observation of Thermally Induced Piezomagnetic Switching in Cu2OSeO3 Polymorph Synthesized under High-Pressure (Adv. Phys. Res. 11/2024)","authors":"Hung-Cheng Wu,&nbsp;Takuya Aoyama,&nbsp;Daisuke Morikawa,&nbsp;Daisuke Okuyama,&nbsp;Kazuhiro Nawa,&nbsp;Wei-Tin Chen,&nbsp;Chan-Hung Lu,&nbsp;Tsung-Wen Yen,&nbsp;Shin-Ming Huang,&nbsp;Stuart Calder,&nbsp;Shuki Torii,&nbsp;Kenya Ohgushi,&nbsp;Masami Terauchi,&nbsp;Taku J. Sato","doi":"10.1002/apxr.202470026","DOIUrl":"https://doi.org/10.1002/apxr.202470026","url":null,"abstract":"<p><b>Piezomagnetic switching</b></p><p>In article number 2400054, Hung-Cheng Wu, Taku J. Sato, and co-workers report the first observation of a finite enhancement of the weak ferromagnetic component in a Cu-based compound under uniaxial stress, providing evidence of the piezomagnetic effect and confirming the magnetic space group determination resolved by neutron diffraction. An intriguing sign change in the piezomagnetic coefficient holds the potential for realizing new functionality in switchable magnetic domains through temperature and pressure manipulation.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202470026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Green Fluorescent Protein Brownian Motion: Temperature and Concentration Dependencies Through Luminescence Thermometry (Adv. Phys. Res. 11/2024) 探索绿色荧光蛋白布朗运动:通过发光测温仪探索温度和浓度依赖性(Adv.)
Pub Date : 2024-11-07 DOI: 10.1002/apxr.202470024
Yongwei Guo, Fernando E. Maturi, Carlos D. S. Brites, Luís D. Carlos

Measuring protein dynamics by luminescent nanothermometry

Luminescent nanothermometry emerges as a powerful tool for studying protein dynamics. In their article 2400085, F. E. Maturi, L. D. Carlos and co-workers describe how they employed the technique to measure the temperature dependence of green fluorescent protein Brownian velocity across physiological temperatures and distinct concentrations.

通过发光纳米温度计测量蛋白质动态发光纳米温度计成为研究蛋白质动态的有力工具。在文章 2400085 中,F. E. Maturi、L. D. Carlos 及其合作者描述了他们如何利用该技术测量绿色荧光蛋白布朗速度在生理温度和不同浓度下的温度依赖性。
{"title":"Exploring Green Fluorescent Protein Brownian Motion: Temperature and Concentration Dependencies Through Luminescence Thermometry (Adv. Phys. Res. 11/2024)","authors":"Yongwei Guo,&nbsp;Fernando E. Maturi,&nbsp;Carlos D. S. Brites,&nbsp;Luís D. Carlos","doi":"10.1002/apxr.202470024","DOIUrl":"https://doi.org/10.1002/apxr.202470024","url":null,"abstract":"<p><b>Measuring protein dynamics by luminescent nanothermometry</b></p><p>Luminescent nanothermometry emerges as a powerful tool for studying protein dynamics. In their article 2400085, F. E. Maturi, L. D. Carlos and co-workers describe how they employed the technique to measure the temperature dependence of green fluorescent protein Brownian velocity across physiological temperatures and distinct concentrations.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202470024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Susceptibility Invariance and Duality-Matching Condition for Perpendicular-Motion Metasurface (Adv. Phys. Res. 10/2024) 垂直运动元表面的可感性不变性和对偶匹配条件(Adv. Phys. Res.)
Pub Date : 2024-10-09 DOI: 10.1002/apxr.202470022
Bo Zhou, Xingsong Feng, Enzong Wu, Fei Gao, Hongsheng Chen, Zuojia Wang

Susceptibility Parameters for Perpendicularly Moving Metasurfaces

This front cover illustrates customizable electromagnetic responses from moving metasurfaces. In article number 2400073, Hongsheng Chen, Zuojia Wang and co-workers explain how the susceptibility parameters transform when a metasurface moves perpendicularly towards the sources. The duality-matching condition for moving-invariant behaviors is derived. The absorption and chirality performance can be well preserved when the designed metasurfaces move quickly.

垂直移动元表面的感生参数本封面展示了移动元表面的可定制电磁响应。在编号为 2400073 的文章中,陈宏生、王作佳及合作者解释了当元表面垂直于信号源移动时,其感性参数是如何变化的。推导出了移动不变行为的对偶匹配条件。当设计的元表面快速移动时,吸收和手性性能可以很好地保持。
{"title":"Susceptibility Invariance and Duality-Matching Condition for Perpendicular-Motion Metasurface (Adv. Phys. Res. 10/2024)","authors":"Bo Zhou,&nbsp;Xingsong Feng,&nbsp;Enzong Wu,&nbsp;Fei Gao,&nbsp;Hongsheng Chen,&nbsp;Zuojia Wang","doi":"10.1002/apxr.202470022","DOIUrl":"https://doi.org/10.1002/apxr.202470022","url":null,"abstract":"<p><b>Susceptibility Parameters for Perpendicularly Moving Metasurfaces</b></p><p>This front cover illustrates customizable electromagnetic responses from moving metasurfaces. In article number 2400073, Hongsheng Chen, Zuojia Wang and co-workers explain how the susceptibility parameters transform when a metasurface moves perpendicularly towards the sources. The duality-matching condition for moving-invariant behaviors is derived. The absorption and chirality performance can be well preserved when the designed metasurfaces move quickly.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202470022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead (Adv. Phys. Res. 10/2024) 刊头 (Adv. Phys. Res. 10/2024)
Pub Date : 2024-10-09 DOI: 10.1002/apxr.202470023
{"title":"Masthead (Adv. Phys. Res. 10/2024)","authors":"","doi":"10.1002/apxr.202470023","DOIUrl":"https://doi.org/10.1002/apxr.202470023","url":null,"abstract":"","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202470023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological Insulator Nanowires Made by AFM Nanopatterning: Fabrication Process and Ultra Low-Temperature Transport Properties
Pub Date : 2024-10-04 DOI: 10.1002/apxr.202400108
Dmitry S. Yakovlev, Aleksei V. Frolov, Ivan A. Nazhestkin, Alexei G. Temiryazev, Andrey P. Orlov, Jonathan Shvartzberg, Sergey E. Dizhur, Vladimir L. Gurtovoi, Razmik Hovhannisyan, Vasily S. Stolyarov

Topological insulator nanostructures became an essential platform for studying novel fundamental effects emerging at the nanoscale. However, conventional nanopatterning techniques, based on electron beam lithography and reactive ion etching of films, have inherent limitations of edge precision, resolution, and modification of surface properties, all of which are critical factors for topological insulator materials. In this study, an alternative approach for the fabrication of ultrathin Bi2Se3 nanoribbons is introduced by utilizing a diamond tip of an atomic force microscope (AFM) to cut atomically thin exfoliated films. This study includes an investigation of the magnetotransport properties of ultrathin Bi2Se3 topological insulator nanoribbons with controlled cross-sections at ultra-low 14 mK) temperatures. Current-dependent magnetoresistance oscillations are observed with the weak antilocalization effect, confirming the coherent propagation of 2D electrons around the nanoribbon surface's perimeter and the robustness of topologically protected surface states. In contrast to conventional lithography methods, this approach does not require a highly controlled clean room environment and can be executed under ambient conditions. Importantly, this method facilitates the precise patterning and can be applied to a wide range of 2D materials.

{"title":"Topological Insulator Nanowires Made by AFM Nanopatterning: Fabrication Process and Ultra Low-Temperature Transport Properties","authors":"Dmitry S. Yakovlev,&nbsp;Aleksei V. Frolov,&nbsp;Ivan A. Nazhestkin,&nbsp;Alexei G. Temiryazev,&nbsp;Andrey P. Orlov,&nbsp;Jonathan Shvartzberg,&nbsp;Sergey E. Dizhur,&nbsp;Vladimir L. Gurtovoi,&nbsp;Razmik Hovhannisyan,&nbsp;Vasily S. Stolyarov","doi":"10.1002/apxr.202400108","DOIUrl":"https://doi.org/10.1002/apxr.202400108","url":null,"abstract":"<p>Topological insulator nanostructures became an essential platform for studying novel fundamental effects emerging at the nanoscale. However, conventional nanopatterning techniques, based on electron beam lithography and reactive ion etching of films, have inherent limitations of edge precision, resolution, and modification of surface properties, all of which are critical factors for topological insulator materials. In this study, an alternative approach for the fabrication of ultrathin Bi<sub>2</sub>Se<sub>3</sub> nanoribbons is introduced by utilizing a diamond tip of an atomic force microscope (AFM) to cut atomically thin exfoliated films. This study includes an investigation of the magnetotransport properties of ultrathin Bi<sub>2</sub>Se<sub>3</sub> topological insulator nanoribbons with controlled cross-sections at ultra-low 14 mK) temperatures. Current-dependent magnetoresistance oscillations are observed with the weak antilocalization effect, confirming the coherent propagation of 2D electrons around the nanoribbon surface's perimeter and the robustness of topologically protected surface states. In contrast to conventional lithography methods, this approach does not require a highly controlled clean room environment and can be executed under ambient conditions. Importantly, this method facilitates the precise patterning and can be applied to a wide range of 2D materials.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400108","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the Adaptability of Pt/HfO2/n+Si Memristors with Self-Limiting Oxygen-Deficient Hafnium Oxide Films under Repetitive Pulse Stimuli 带有自限制缺氧氧化铪薄膜的 Pt/HfO2/n+Si Memristors 在重复脉冲刺激下的适应性研究
Pub Date : 2024-09-23 DOI: 10.1002/apxr.202400047
Kexiang Wang, Jie Lu, Zeyang Xiang, Mengrui Shi, Liuxuan Wu, Fuyu Yan, Ran Jiang

In this study, the performance of memristive devices made of oxygen-deficient HfO2 films is investigated when exposed to various electrical pulse stimulations. The devices exhibited signs of fatigue with the number increasing of a fixed frequency pulse, mirroring the synaptic adaptation to repeat stimuli. Interestingly, the synaptic behavior can be highly simulated by logic function, and the pulse frequency and magnitude play different roles in changing the synaptic curves. Only pulses with certain quantized frequencies can reshape the synaptic current response curve. In addition, a similarity is observed between the frequency stability of these devices and the biological lifespan in response to external stimuli. These observations strengthen the case for the potential of memristors in emulating cognitive functions.

本研究调查了由缺氧二氧化铪薄膜制成的记忆器件在受到各种电脉冲刺激时的性能。随着固定频率脉冲次数的增加,器件表现出疲劳迹象,这反映了突触对重复刺激的适应性。有趣的是,突触行为可通过逻辑函数进行高度模拟,脉冲频率和幅度在改变突触曲线方面发挥着不同的作用。只有特定量化频率的脉冲才能重塑突触电流响应曲线。此外,这些装置的频率稳定性与生物对外界刺激的反应寿命之间也有相似之处。这些观察结果增强了忆阻器在模拟认知功能方面的潜力。
{"title":"Investigation of the Adaptability of Pt/HfO2/n+Si Memristors with Self-Limiting Oxygen-Deficient Hafnium Oxide Films under Repetitive Pulse Stimuli","authors":"Kexiang Wang,&nbsp;Jie Lu,&nbsp;Zeyang Xiang,&nbsp;Mengrui Shi,&nbsp;Liuxuan Wu,&nbsp;Fuyu Yan,&nbsp;Ran Jiang","doi":"10.1002/apxr.202400047","DOIUrl":"https://doi.org/10.1002/apxr.202400047","url":null,"abstract":"<p>In this study, the performance of memristive devices made of oxygen-deficient HfO<sub>2</sub> films is investigated when exposed to various electrical pulse stimulations. The devices exhibited signs of fatigue with the number increasing of a fixed frequency pulse, mirroring the synaptic adaptation to repeat stimuli. Interestingly, the synaptic behavior can be highly simulated by logic function, and the pulse frequency and magnitude play different roles in changing the synaptic curves. Only pulses with certain quantized frequencies can reshape the synaptic current response curve. In addition, a similarity is observed between the frequency stability of these devices and the biological lifespan in response to external stimuli. These observations strengthen the case for the potential of memristors in emulating cognitive functions.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Physics Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1