Synthesis and Characterization of CuO and NiO Nanoparticles Derived from Schiff Base Complexes

Q2 Pharmacology, Toxicology and Pharmaceutics Science and Technology Indonesia Pub Date : 2024-01-22 DOI:10.26554/sti.2024.9.1.103-112
A. Bader
{"title":"Synthesis and Characterization of CuO and NiO Nanoparticles Derived from Schiff Base Complexes","authors":"A. Bader","doi":"10.26554/sti.2024.9.1.103-112","DOIUrl":null,"url":null,"abstract":"This study reports the synthesizes of such as copper oxide (CuO) and nickel oxide (NiO) nanoparticles (NPs) by thermal decompositions of Schiff base complexes and their physical characterization. A polydentate Schiff base ligand, (E)-2-(((2-chlorobenzyl)imino)methyl)phenol (CIMP), was synthesized by condensing 2-chlorobenzylamine and 2-hydroxybenzaldehyde. The ligand was identified by melting point, FT-IR, UV-Vis, and (1H and 13C NMR) spectroscopy. Cu(II) and Ni(II) complexes were prepared by reacting CIMP with the corresponding molar ratio in a 1:1 (metal: ligand). The complexes (Com1 and Com2) were characterized by melting point, FT-IR, and UV-Vis spectroscopy. The FT-IR spectra of the (Com1 and Com2) showed that the deprotonated CIMP ligand coordinated to the Ni(II) and Cu(II) metal ions through the azomethine nitrogen, aryl chloride, chlorine, and phenolic oxygen atoms. To determine the crystalline structure of the synthesized products, X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) techniques were employed. The formation of copper oxide and nickel oxide as the new products was confirmed by XRD analysis. SEM imaging revealed the uniform and spherical morphology of the nanoparticles, which exhibited a remarkably narrow size distribution with an average diameter of 20 to 22 nm, highlighting their exceptional precision.","PeriodicalId":21644,"journal":{"name":"Science and Technology Indonesia","volume":"33 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26554/sti.2024.9.1.103-112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

This study reports the synthesizes of such as copper oxide (CuO) and nickel oxide (NiO) nanoparticles (NPs) by thermal decompositions of Schiff base complexes and their physical characterization. A polydentate Schiff base ligand, (E)-2-(((2-chlorobenzyl)imino)methyl)phenol (CIMP), was synthesized by condensing 2-chlorobenzylamine and 2-hydroxybenzaldehyde. The ligand was identified by melting point, FT-IR, UV-Vis, and (1H and 13C NMR) spectroscopy. Cu(II) and Ni(II) complexes were prepared by reacting CIMP with the corresponding molar ratio in a 1:1 (metal: ligand). The complexes (Com1 and Com2) were characterized by melting point, FT-IR, and UV-Vis spectroscopy. The FT-IR spectra of the (Com1 and Com2) showed that the deprotonated CIMP ligand coordinated to the Ni(II) and Cu(II) metal ions through the azomethine nitrogen, aryl chloride, chlorine, and phenolic oxygen atoms. To determine the crystalline structure of the synthesized products, X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) techniques were employed. The formation of copper oxide and nickel oxide as the new products was confirmed by XRD analysis. SEM imaging revealed the uniform and spherical morphology of the nanoparticles, which exhibited a remarkably narrow size distribution with an average diameter of 20 to 22 nm, highlighting their exceptional precision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
希夫碱络合物衍生的氧化铜和氧化镍纳米粒子的合成与表征
本研究报告了通过热分解席夫碱配合物合成氧化铜(CuO)和氧化镍(NiO)等纳米粒子(NPs)及其物理特性。(E)-2-(((2-chlorobenzyl)imino)methyl)phenol (CIMP) 是通过缩合 2-chlorobenzylamine 和 2-hydroxybenzaldehyde 合成的多齿席夫碱配体。配体通过熔点、傅立叶变换红外光谱、紫外可见光谱和(1H 和 13C NMR)光谱进行鉴定。铜(II)和镍(II)配合物是通过 CIMP 与相应摩尔比的 1:1(金属:配体)反应制备的。通过熔点、傅立叶变换红外光谱和紫外可见光谱对配合物(Com1 和 Com2)进行了表征。Com1 和 Com2 的傅立叶变换红外光谱显示,去质子化的 CIMP 配体通过偶氮甲基氮、芳基氯、氯和酚氧原子与 Ni(II) 和 Cu(II) 金属离子配位。为了确定合成产物的晶体结构,采用了 X 射线粉末衍射(XRD)和扫描电子显微镜(SEM)技术。X 射线衍射分析证实了氧化铜和氧化镍作为新产品的形成。扫描电子显微镜成像显示了纳米粒子均匀的球形形态,其尺寸分布非常窄,平均直径为 20-22 纳米,突出了其卓越的精密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science and Technology Indonesia
Science and Technology Indonesia Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (miscellaneous)
CiteScore
1.80
自引率
0.00%
发文量
72
审稿时长
8 weeks
期刊最新文献
Modification of Indonesian Kaolinite-Based Silica Coarse (SC) for RNA Extraction Method of SARS-CoV-2 An Updated Water Masses Stratification of Indonesian Maritime Continent (IMC) Attributed to Normal and ENSO Conditions by Argo Float Anti-Inflammatory Activity and Phytochemical Profile from the Leaves of the Mangrove Sonneratia caseolaris (L.) Engl. for Future Drug Discovery Results on Toeplitz Determinants for Subclasses of Analytic Functions Associated to q-Derivative Operator LSTM-CNN Hybrid Model Performance Improvement with BioWordVec for Biomedical Report Big Data Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1