Evaluation of ML-based classification algorithms for GNSS signals in ocean environment

IF 1.2 Q4 REMOTE SENSING Journal of Applied Geodesy Pub Date : 2024-01-22 DOI:10.1515/jag-2023-0091
Jyothsna S. R. S. Koiloth, D. S. Achanta, Padma Raju Koppireddy
{"title":"Evaluation of ML-based classification algorithms for GNSS signals in ocean environment","authors":"Jyothsna S. R. S. Koiloth, D. S. Achanta, Padma Raju Koppireddy","doi":"10.1515/jag-2023-0091","DOIUrl":null,"url":null,"abstract":"\n In the maritime environment, multipath interference exhibits a significantly pronounced influence, resulting in GNSS system performance degradation. Enhancing system performance involves the identification and elimination of NLOS signals. This study focuses on the analysis of multipath data induced by sea waves, collected off the coast of Kakinada Sea (16.98° N, 82.29° E), to categorize signals as Line-of-Sight (LOS), Non-Line-of-Sight (NLOS) and Multipath (MP). A machine learning (ML) approach is employed to identify the presence of LOS, NLOS and MP signals in a coastal environment, both before and after the advancement of tidal waves. In the proposed approach, ML algorithms are trained using 3 key parameters namely elevation angle, signal strength and pseudorange residuals. This study involves the implementation of 14 prominent supervised classification algorithms and their accuracies and computational times are compared. The results due to GPS (L1) and IRNSS (L5 and S1) are considered. Decision Tree and its ensemble function AdaBoost, exhibited exceptional performance of accuracy (99.99 %) and computational time (0.45 s).","PeriodicalId":45494,"journal":{"name":"Journal of Applied Geodesy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2023-0091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

In the maritime environment, multipath interference exhibits a significantly pronounced influence, resulting in GNSS system performance degradation. Enhancing system performance involves the identification and elimination of NLOS signals. This study focuses on the analysis of multipath data induced by sea waves, collected off the coast of Kakinada Sea (16.98° N, 82.29° E), to categorize signals as Line-of-Sight (LOS), Non-Line-of-Sight (NLOS) and Multipath (MP). A machine learning (ML) approach is employed to identify the presence of LOS, NLOS and MP signals in a coastal environment, both before and after the advancement of tidal waves. In the proposed approach, ML algorithms are trained using 3 key parameters namely elevation angle, signal strength and pseudorange residuals. This study involves the implementation of 14 prominent supervised classification algorithms and their accuracies and computational times are compared. The results due to GPS (L1) and IRNSS (L5 and S1) are considered. Decision Tree and its ensemble function AdaBoost, exhibited exceptional performance of accuracy (99.99 %) and computational time (0.45 s).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估海洋环境中基于 ML 的全球导航卫星系统信号分类算法
在海洋环境中,多径干扰的影响非常明显,导致全球导航卫星系统性能下降。提高系统性能需要识别和消除 NLOS 信号。本研究重点分析了在卡基纳达海(北纬 16.98°,东经 82.29°)沿岸收集到的海浪引起的多径数据,将信号分为视距(LOS)、非视距(NLOS)和多径(MP)。采用机器学习(ML)方法来识别沿海环境中存在的 LOS、NLOS 和 MP 信号,包括潮汐前进之前和之后的信号。在提议的方法中,ML 算法使用 3 个关键参数(即仰角、信号强度和伪距残差)进行训练。本研究采用了 14 种著名的监督分类算法,并对其精确度和计算时间进行了比较。研究考虑了 GPS(L1)和 IRNSS(L5 和 S1)的结果。决策树及其集合函数 AdaBoost 在准确率(99.99%)和计算时间(0.45 秒)方面表现出卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Geodesy
Journal of Applied Geodesy REMOTE SENSING-
CiteScore
2.30
自引率
7.10%
发文量
30
期刊最新文献
Occurrence characteristics of ionospheric scintillations in the civilian GPS signals (L1, L2, and L5) through a dedicated scintillation monitoring receiver at a low-latitude location in India during the 25th solar cycle A new challenge for cadastral surveying in Taiwan: feasibility analysis using combination on CORS data and online PPP service Monitoring of a rockfill embankment dam using TLS and sUAS point clouds Analyzing recent deformation in Wadi Hagul, Eastern Desert, Egypt, via advanced remote sensing and geodetic data processing Regional evaluation of global geopotential models and three types of digital elevation models with ground-based gravity and GNSS/levelling data using several techniques over Sudan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1