Spatial Distribution Analyses of Axially Long Plasmas under a Multi-Cusp Magnetic Field Using a Kinetic Particle Simulation Code KEIO-MARC

Plasma Pub Date : 2024-01-22 DOI:10.3390/plasma7010005
Ryota Nishimura, T. Seino, Keigo Yoshimura, Hiroyuki Takahashi, Akinobu Matsuyama, Kazuo Hoshino, Tetsutarou Oishi, Kenji Tobita
{"title":"Spatial Distribution Analyses of Axially Long Plasmas under a Multi-Cusp Magnetic Field Using a Kinetic Particle Simulation Code KEIO-MARC","authors":"Ryota Nishimura, T. Seino, Keigo Yoshimura, Hiroyuki Takahashi, Akinobu Matsuyama, Kazuo Hoshino, Tetsutarou Oishi, Kenji Tobita","doi":"10.3390/plasma7010005","DOIUrl":null,"url":null,"abstract":"To realize the development of a long plasma source with a uniform electron density distribution in the axial direction, the spatial distribution of plasma under a multi-cusp magnetic field was analyzed using a KEIO-MARC code. Considering a cylindrical plasma source with an axial length of 3000 mm and a cross-sectional diameter of 100 mm, in which the filament electrode was the electron source, the electron density distribution was calculated using the residual magnetic flux density, Bres, and the number of permanent magnets installed at different locations surrounding the device, Nmag, as design parameters. The results show that both Bres and Nmag improved the uniformity of the electron density distribution in the axial direction. The maximum axial electron density decreased with increasing Nmag and increased with increasing Bres. These trends can be explained by considering the nature of the multi-cusp field, where particles are mainly confined to the field-free region (FFR) near the center of the plasma column, and the loss of particles due to radial particle transport. The use of multiple filaments at intervals shorter than the plasma decay length dramatically improved axial uniformity. To further improve axial uniformity, the filament length and FFR must be properly set so that electrons are emitted inside the FFR.","PeriodicalId":509984,"journal":{"name":"Plasma","volume":"26 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/plasma7010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To realize the development of a long plasma source with a uniform electron density distribution in the axial direction, the spatial distribution of plasma under a multi-cusp magnetic field was analyzed using a KEIO-MARC code. Considering a cylindrical plasma source with an axial length of 3000 mm and a cross-sectional diameter of 100 mm, in which the filament electrode was the electron source, the electron density distribution was calculated using the residual magnetic flux density, Bres, and the number of permanent magnets installed at different locations surrounding the device, Nmag, as design parameters. The results show that both Bres and Nmag improved the uniformity of the electron density distribution in the axial direction. The maximum axial electron density decreased with increasing Nmag and increased with increasing Bres. These trends can be explained by considering the nature of the multi-cusp field, where particles are mainly confined to the field-free region (FFR) near the center of the plasma column, and the loss of particles due to radial particle transport. The use of multiple filaments at intervals shorter than the plasma decay length dramatically improved axial uniformity. To further improve axial uniformity, the filament length and FFR must be properly set so that electrons are emitted inside the FFR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用动力学粒子模拟代码 KEIO-MARC 分析多尖顶磁场下轴向长等离子体的空间分布情况
为了开发轴向电子密度分布均匀的长等离子体源,我们使用 KEIO-MARC 代码分析了多尖角磁场下等离子体的空间分布。以一个轴向长度为3000毫米、横截面直径为100毫米的圆柱形等离子体源(其中灯丝电极为电子源)为例,以残余磁通密度Bres和装置周围不同位置安装的永久磁铁数量Nmag为设计参数,计算了电子密度分布。结果表明,Bres 和 Nmag 都改善了轴向电子密度分布的均匀性。最大轴向电子密度随着 Nmag 的增加而降低,随着 Bres 的增加而升高。考虑到多尖锥场的性质(粒子主要被限制在等离子体柱中心附近的无场区(FFR))以及粒子径向传输造成的粒子损失,可以解释这些趋势。使用间隔短于等离子体衰变长度的多丝可显著改善轴向均匀性。为了进一步提高轴向均匀性,必须适当设置灯丝长度和 FFR,以便电子在 FFR 内发射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
期刊最新文献
Toroidal CO2 Plasma Sources with Low- and High-Frequency Power Coupling Configurations for Improved Energy Transfer Efficiencies A Review of Experimental Investigations into the Time Evolution of Low-Pressure Capacitively Coupled Plasmas in Their Early Stages of Development Analysis of ICRF Heating Schemes in ITER Non-Active Plasmas Using PION+ETS Integrated Modeling Advanced Diagnostics of Electrons Escaping from Laser-Produced Plasma Shock–Discharge Interaction Model Extended into the Third Dimension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1