J. Gutjahr, Milton Pereira, Jurandir Marcos Sá de Sousa, H. S. Ferreira, Anselmo Thiesen Júnior
{"title":"Powder degradation as a consequence of laser interaction: A study of SS 316L powder reuse on the laser directed energy deposition process","authors":"J. Gutjahr, Milton Pereira, Jurandir Marcos Sá de Sousa, H. S. Ferreira, Anselmo Thiesen Júnior","doi":"10.2351/7.0001093","DOIUrl":null,"url":null,"abstract":"The feedstock capture efficiency on powder laser directed energy deposition (L-DED) is becoming a big challenge in the industrial use of the L-DED process for the manufacturing of large-scale AM parts. The powder capture efficiency is dependent on process optimization and the toolpath. The current literature presents a vast range of usual powder efficiency, between 3% and 32% and in some specific cases exceeding 90%. In L-DED, the powder-gas jet stream interacts with the laser beam adding material locally onto the substrate. Part of this material is captured by the melt pool. The not captured material that is affected by the laser beam suffers degradation. In the literature, there is a lack of studies related to powder reuse in the L-DED process. This paper presents a comprehensive study on the consequence of laser interaction with SS 316L metal powder particles during the L-DED process using a range of different powder characterization techniques to assess the powder morphology, size distribution, chemical composition, followability, and density. The study was conducted within eight powder reuse cycles, without adding virgin material to the powder batch. Reduction of particle size distribution range, increase in circularity, and improvement in the powder flowability were identified as consequences of powder reuse. The result of laser interaction with particles was further explored by scanning electron microscopy, presenting the continuous modification of the particles across the eight reuse cycles. The oxygen content on the particles was also measured to access the O2 pick-up as a consequence of particle heating.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2351/7.0001093","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The feedstock capture efficiency on powder laser directed energy deposition (L-DED) is becoming a big challenge in the industrial use of the L-DED process for the manufacturing of large-scale AM parts. The powder capture efficiency is dependent on process optimization and the toolpath. The current literature presents a vast range of usual powder efficiency, between 3% and 32% and in some specific cases exceeding 90%. In L-DED, the powder-gas jet stream interacts with the laser beam adding material locally onto the substrate. Part of this material is captured by the melt pool. The not captured material that is affected by the laser beam suffers degradation. In the literature, there is a lack of studies related to powder reuse in the L-DED process. This paper presents a comprehensive study on the consequence of laser interaction with SS 316L metal powder particles during the L-DED process using a range of different powder characterization techniques to assess the powder morphology, size distribution, chemical composition, followability, and density. The study was conducted within eight powder reuse cycles, without adding virgin material to the powder batch. Reduction of particle size distribution range, increase in circularity, and improvement in the powder flowability were identified as consequences of powder reuse. The result of laser interaction with particles was further explored by scanning electron microscopy, presenting the continuous modification of the particles across the eight reuse cycles. The oxygen content on the particles was also measured to access the O2 pick-up as a consequence of particle heating.
期刊介绍:
The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety.
The following international and well known first-class scientists serve as allocated Editors in 9 new categories:
High Precision Materials Processing with Ultrafast Lasers
Laser Additive Manufacturing
High Power Materials Processing with High Brightness Lasers
Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures
Surface Modification
Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology
Spectroscopy / Imaging / Diagnostics / Measurements
Laser Systems and Markets
Medical Applications & Safety
Thermal Transportation
Nanomaterials and Nanoprocessing
Laser applications in Microelectronics.