Machine Learning based Forest Fire Prediction: A Comparative Approach

Rohini Patil, Janhvi Pawar, Kamal Shah, Disha Shetty, A. Ajith, Sakshi Jadhav
{"title":"Machine Learning based Forest Fire Prediction: A Comparative Approach","authors":"Rohini Patil, Janhvi Pawar, Kamal Shah, Disha Shetty, A. Ajith, Sakshi Jadhav","doi":"10.54392/irjmt2413","DOIUrl":null,"url":null,"abstract":"Wildfires are among the world's most pressing issues, and they are getting more prevalent as global warming and other environmental conditions deteriorate. These wildfires might be caused by humans or by natural causes. Wildfires are one of the factors contributing to the extinction of rare flora and wildlife that serve to maintain our planet's ecological balance. In this paper, a comparative analysis of various machine learning classifier models for predicting forest fires was undertaken using two separate datasets. The suggested system's processing is dependent on a few characteristics such as temperature, humidity, oxygen, and wind. Several machine learning classification techniques, including logistic regression, support vector classifier, decision tree, k neighbors and random forest, were used in this study. For further optimization of the model, K-fold cross validation method and hyperparameter tuning were implemented. The system reveals Support Vector Machine as the best strategy for the forest fire dataset, with 96.88% accuracy. Random Forest method was found to be the best for the Cortez and Morais dataset, with 90.24% accuracy.","PeriodicalId":14412,"journal":{"name":"International Research Journal of Multidisciplinary Technovation","volume":"10 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal of Multidisciplinary Technovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54392/irjmt2413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wildfires are among the world's most pressing issues, and they are getting more prevalent as global warming and other environmental conditions deteriorate. These wildfires might be caused by humans or by natural causes. Wildfires are one of the factors contributing to the extinction of rare flora and wildlife that serve to maintain our planet's ecological balance. In this paper, a comparative analysis of various machine learning classifier models for predicting forest fires was undertaken using two separate datasets. The suggested system's processing is dependent on a few characteristics such as temperature, humidity, oxygen, and wind. Several machine learning classification techniques, including logistic regression, support vector classifier, decision tree, k neighbors and random forest, were used in this study. For further optimization of the model, K-fold cross validation method and hyperparameter tuning were implemented. The system reveals Support Vector Machine as the best strategy for the forest fire dataset, with 96.88% accuracy. Random Forest method was found to be the best for the Cortez and Morais dataset, with 90.24% accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的森林火灾预测:比较方法
野火是世界上最紧迫的问题之一,而且随着全球变暖和其他环境条件的恶化,野火越来越普遍。这些野火可能是人为的,也可能是自然的。野火是导致珍稀植物和野生动物灭绝的因素之一,而珍稀植物和野生动物正是维持地球生态平衡的重要力量。本文使用两个独立的数据集,对预测森林火灾的各种机器学习分类器模型进行了比较分析。建议系统的处理过程取决于温度、湿度、氧气和风力等一些特征。本研究使用了几种机器学习分类技术,包括逻辑回归、支持向量分类器、决策树、k 邻居和随机森林。为进一步优化模型,采用了 K 折交叉验证法和超参数调整法。系统显示,支持向量机是森林火灾数据集的最佳策略,准确率为 96.88%。随机森林方法是 Cortez 和 Morais 数据集的最佳方法,准确率为 90.24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Advancing Fault Detection Efficiency in Wireless Power Transmission with Light GBM for Real-Time Detection Enhancement Quantum Chemical Computational Studies on the Structural Aspects, Spectroscopic Properties, Hirshfeld Surfaces, Donor-Acceptor Interactions and Molecular Docking of Clascosterone: A Promising Antitumor Agent Evaluation of Structural Stability of Four-Storied building using Non-Destructive Testing Techniques Diagnosis of COVID-19 in X-ray Images using Deep Neural Networks An Ensemble Classification Model to Predict Alzheimer’s Incidence as Multiple Classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1