Mask wearing detection algorithm based on improved YOLOv7

Fang Luo, Yin Zhang, Lunhui Xu, Zhiliang Zhang, Ming Li, Weixiong Zhang
{"title":"Mask wearing detection algorithm based on improved YOLOv7","authors":"Fang Luo, Yin Zhang, Lunhui Xu, Zhiliang Zhang, Ming Li, Weixiong Zhang","doi":"10.1177/00202940231223084","DOIUrl":null,"url":null,"abstract":"The ongoing COVID-19 pandemic remains a significant threat, emphasizing the critical importance of mask-wearing to reduce infection risks. However, existing methods for mask detection encounter challenges such as identifying small targets and achieving high accuracy. In this paper, we present an enhanced YOLOv7 model tailored for mask-wearing detection. we employing a Generative Adversarial Network (GAN) to augment the original dataset, introducing the Convolutional Block Attention Module (CBAM) mechanism into the YOLOv7 model to enhance its small target detection capabilities, and replacing the model’s activation function with Parametric Rectified Linear Unit (FReLU) to improve overall performance. Experimental validation on a dataset showcases an average precision of 97.8% and a real-time inference speed of 64 frames per second (fps), meeting the real-time mask-wearing detection requirements effectively.","PeriodicalId":18375,"journal":{"name":"Measurement and Control","volume":" 813","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231223084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The ongoing COVID-19 pandemic remains a significant threat, emphasizing the critical importance of mask-wearing to reduce infection risks. However, existing methods for mask detection encounter challenges such as identifying small targets and achieving high accuracy. In this paper, we present an enhanced YOLOv7 model tailored for mask-wearing detection. we employing a Generative Adversarial Network (GAN) to augment the original dataset, introducing the Convolutional Block Attention Module (CBAM) mechanism into the YOLOv7 model to enhance its small target detection capabilities, and replacing the model’s activation function with Parametric Rectified Linear Unit (FReLU) to improve overall performance. Experimental validation on a dataset showcases an average precision of 97.8% and a real-time inference speed of 64 frames per second (fps), meeting the real-time mask-wearing detection requirements effectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进型 YOLOv7 的面罩佩戴检测算法
目前的 COVID-19 大流行仍然是一个重大威胁,强调了佩戴口罩对降低感染风险的极端重要性。然而,现有的口罩检测方法在识别小目标和实现高精度等方面遇到了挑战。我们采用生成对抗网络(GAN)来增强原始数据集,在 YOLOv7 模型中引入卷积块注意力模块(CBAM)机制以增强其小目标检测能力,并用参数整流线性单元(FReLU)替换模型的激活函数以提高整体性能。在数据集上进行的实验验证表明,该模型的平均精度为 97.8%,实时推理速度为每秒 64 帧(fps),能有效满足戴面具者的实时检测要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Train timetable and stopping plan generation based on cross-line passenger flow in high-speed railway network Enhancing water pressure sensing in challenging environments: A strain gage technology integrated with deep learning approach Photovoltaic MPPT control and improvement strategies considering environmental factors: based on PID-type sliding mode control and improved grey wolf optimization Tracking controller design for quadrotor UAVs under external disturbances using a high-order sliding mode-assisted disturbance observer Evaluating vehicle trafficability on soft ground using wheel force information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1