Demonstration of transfer learning using 14 nm technology analog ReRAM array

IF 1.9 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Frontiers in electronics Pub Date : 2024-01-15 DOI:10.3389/felec.2023.1331280
F. F. Athena, Omobayode Fagbohungbe, Nanbo Gong, M. Rasch, Jimmy Penaloza, SoonCheon Seo, Arthur R Gasasira, P. Solomon, Valeria Bragaglia, S. Consiglio, H. Higuchi, Chanro Park, K. Brew, Paul Jamison, C. Catano, Iqbal Saraf, Claire Silvestre, Xuefeng Liu, Babar Khan, Nikhil Jain, Steven McDermott, Rick Johnson, I. Estrada-Raygoza, Juntao Li, T. Gokmen, Ning Li, Ruturaj Pujari, Fabio Carta, H. Miyazoe, Martin M. Frank, Antonio La Porta, D. Koty, Qingyun Yang, R. Clark, K. Tapily, C. Wajda, A. Mosden, Jeff Shearer, Andrew Metz, S. Teehan, N. Saulnier, B. Offrein, T. Tsunomura, G. Leusink, Vijay Narayanan, Takashi Ando
{"title":"Demonstration of transfer learning using 14 nm technology analog ReRAM array","authors":"F. F. Athena, Omobayode Fagbohungbe, Nanbo Gong, M. Rasch, Jimmy Penaloza, SoonCheon Seo, Arthur R Gasasira, P. Solomon, Valeria Bragaglia, S. Consiglio, H. Higuchi, Chanro Park, K. Brew, Paul Jamison, C. Catano, Iqbal Saraf, Claire Silvestre, Xuefeng Liu, Babar Khan, Nikhil Jain, Steven McDermott, Rick Johnson, I. Estrada-Raygoza, Juntao Li, T. Gokmen, Ning Li, Ruturaj Pujari, Fabio Carta, H. Miyazoe, Martin M. Frank, Antonio La Porta, D. Koty, Qingyun Yang, R. Clark, K. Tapily, C. Wajda, A. Mosden, Jeff Shearer, Andrew Metz, S. Teehan, N. Saulnier, B. Offrein, T. Tsunomura, G. Leusink, Vijay Narayanan, Takashi Ando","doi":"10.3389/felec.2023.1331280","DOIUrl":null,"url":null,"abstract":"Analog memory presents a promising solution in the face of the growing demand for energy-efficient artificial intelligence (AI) at the edge. In this study, we demonstrate efficient deep neural network transfer learning utilizing hardware and algorithm co-optimization in an analog resistive random-access memory (ReRAM) array. For the first time, we illustrate that in open-loop deep neural network (DNN) transfer learning for image classification tasks, convergence rates can be accelerated by approximately 3.5 times through the utilization of co-optimized analog ReRAM hardware and the hardware-aware Tiki-Taka v2 (TTv2) algorithm. A simulation based on statistical 14 nm CMOS ReRAM array data provides insights into the performance of transfer learning on larger network workloads, exhibiting notable improvement over conventional training with random initialization. This study shows that analog DNN transfer learning using an optimized ReRAM array can achieve faster convergence with a smaller dataset compared to training from scratch, thus augmenting AI capability at the edge.","PeriodicalId":73081,"journal":{"name":"Frontiers in electronics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/felec.2023.1331280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Analog memory presents a promising solution in the face of the growing demand for energy-efficient artificial intelligence (AI) at the edge. In this study, we demonstrate efficient deep neural network transfer learning utilizing hardware and algorithm co-optimization in an analog resistive random-access memory (ReRAM) array. For the first time, we illustrate that in open-loop deep neural network (DNN) transfer learning for image classification tasks, convergence rates can be accelerated by approximately 3.5 times through the utilization of co-optimized analog ReRAM hardware and the hardware-aware Tiki-Taka v2 (TTv2) algorithm. A simulation based on statistical 14 nm CMOS ReRAM array data provides insights into the performance of transfer learning on larger network workloads, exhibiting notable improvement over conventional training with random initialization. This study shows that analog DNN transfer learning using an optimized ReRAM array can achieve faster convergence with a smaller dataset compared to training from scratch, thus augmenting AI capability at the edge.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 14 纳米技术模拟 ReRAM 阵列演示迁移学习
面对日益增长的边缘高能效人工智能(AI)需求,模拟存储器提供了一种前景广阔的解决方案。在本研究中,我们利用模拟电阻式随机存取存储器(ReRAM)阵列中的硬件和算法协同优化,展示了高效的深度神经网络转移学习。我们首次证明,在用于图像分类任务的开环深度神经网络(DNN)迁移学习中,通过利用共同优化的模拟 ReRAM 硬件和硬件感知 Tiki-Taka v2 (TTv2) 算法,收敛速度可加快约 3.5 倍。基于 14 nm CMOS ReRAM 阵列数据统计的仿真深入揭示了迁移学习在更大网络工作负载上的性能,与采用随机初始化的传统训练相比,迁移学习的性能有了显著提高。这项研究表明,与从头开始训练相比,使用优化 ReRAM 阵列的模拟 DNN 转移学习能以更小的数据集实现更快的收敛,从而增强边缘人工智能能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electromagnetic based flexible bioelectronics and its applications Impact of head-down-tilt body position on abdomen resistance for urinary bladder monitory applications Hardware acceleration of DNA pattern matching using analog resistive CAMs Hardware acceleration of DNA pattern matching using analog resistive CAMs Editorial: Electromagnetic compatibility design and power electronics technologies in modern power systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1