Pub Date : 2023-12-22DOI: 10.3389/felec.2023.1315132
G. Tatsis, G. Baldoumas, V. Christofilakis, P. Kostarakis, P. Varotsos, N. Sarlis, E. Skordas, A. Bechlioulis, L. Michalis, K. K. Naka
Sudden cardiac death (SCD) is one of the leading causes of death worldwide. Many individuals have no cardiovascular symptoms before the SCD event. As a result, the ability to identify the risk before such an event is extremely limited. Timely and accurate prediction of SCD using new electronic technologies is greatly needed. In this work, a new innovative e-health cloud-based system is presented that allows a stratification of SCD risk based on the method of natural time entropy variability analysis. This innovative, non-invasive system can be used easily in any setting. The e-health cloud-based system was evaluated using data from a total of 203 individuals, patients with chronic heart failure (CHF) who are at high risk of SCD and age-matched healthy controls. Statistical analysis was performed in two-time windows of different duration; the first-time window had a duration of 20 min, while the second was 10 min. Employing modern methods of machine learning, classifiers for the discrimination of CHF patients from the healthy controls were obtained for the first as well as the second (half-time) window. The results indicated a very good separation between the two groups, even from samples taken in a 10-min time window. Larger studies are needed to further validate this novel e-health cloud-based system before its use in everyday clinical practice.
{"title":"A new e-health cloud-based system for cardiovascular risk assessment","authors":"G. Tatsis, G. Baldoumas, V. Christofilakis, P. Kostarakis, P. Varotsos, N. Sarlis, E. Skordas, A. Bechlioulis, L. Michalis, K. K. Naka","doi":"10.3389/felec.2023.1315132","DOIUrl":"https://doi.org/10.3389/felec.2023.1315132","url":null,"abstract":"Sudden cardiac death (SCD) is one of the leading causes of death worldwide. Many individuals have no cardiovascular symptoms before the SCD event. As a result, the ability to identify the risk before such an event is extremely limited. Timely and accurate prediction of SCD using new electronic technologies is greatly needed. In this work, a new innovative e-health cloud-based system is presented that allows a stratification of SCD risk based on the method of natural time entropy variability analysis. This innovative, non-invasive system can be used easily in any setting. The e-health cloud-based system was evaluated using data from a total of 203 individuals, patients with chronic heart failure (CHF) who are at high risk of SCD and age-matched healthy controls. Statistical analysis was performed in two-time windows of different duration; the first-time window had a duration of 20 min, while the second was 10 min. Employing modern methods of machine learning, classifiers for the discrimination of CHF patients from the healthy controls were obtained for the first as well as the second (half-time) window. The results indicated a very good separation between the two groups, even from samples taken in a 10-min time window. Larger studies are needed to further validate this novel e-health cloud-based system before its use in everyday clinical practice.","PeriodicalId":73081,"journal":{"name":"Frontiers in electronics","volume":"43 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138946416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The utilization of power electronic-based converters is gaining momentum across a wide spectrum of industries. However, modern power electronic converters operate at higher frequencies compared to conventional power electronic converters, which can lead to higher rates of change in voltage and current during phase switching, and thus potentially produce more severe conducted and radiated electromagnetic interference (EMI). Their electromagnetic compatibility (EMC) has become a critical research topic, and EMI in high-frequency power electronic-based converters is more complex than that in conventional converters. This review presents a comprehensive survey of recent advancements, EMI design, and analysis of modern power electronic-based converters, focusing on the sources and mechanisms of both conducted and radiated EMI, and mitigating techniques. This review also covers the impact of topology optimization, control strategy design, and packaging design on EMC performance. Addressing emerging EMI issues in modern power electronic device-based converters is essential for ensuring safe and reliable operations. Through strategic design optimization and the implementation of EMI mitigation strategies, modern converters can seamlessly be integrated into diverse applications, offering improved EMI performance as a hallmark of their versatility.
{"title":"EMI challenges in modern power electronic-based converters: recent advances and mitigation techniques","authors":"Liang Yuan, Jian Zhang, Zheng Liang, Mingxin Hu, Genhua Chen, Wei Lu","doi":"10.3389/felec.2023.1274258","DOIUrl":"https://doi.org/10.3389/felec.2023.1274258","url":null,"abstract":"The utilization of power electronic-based converters is gaining momentum across a wide spectrum of industries. However, modern power electronic converters operate at higher frequencies compared to conventional power electronic converters, which can lead to higher rates of change in voltage and current during phase switching, and thus potentially produce more severe conducted and radiated electromagnetic interference (EMI). Their electromagnetic compatibility (EMC) has become a critical research topic, and EMI in high-frequency power electronic-based converters is more complex than that in conventional converters. This review presents a comprehensive survey of recent advancements, EMI design, and analysis of modern power electronic-based converters, focusing on the sources and mechanisms of both conducted and radiated EMI, and mitigating techniques. This review also covers the impact of topology optimization, control strategy design, and packaging design on EMC performance. Addressing emerging EMI issues in modern power electronic device-based converters is essential for ensuring safe and reliable operations. Through strategic design optimization and the implementation of EMI mitigation strategies, modern converters can seamlessly be integrated into diverse applications, offering improved EMI performance as a hallmark of their versatility.","PeriodicalId":73081,"journal":{"name":"Frontiers in electronics","volume":" 38","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135291806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-08DOI: 10.3389/felec.2023.1277927
Keshari Nandan, Amit Agarwal, Somnath Bhowmick, Yogesh S. Chauhan
Two-dimensional (2-D) semiconductors are emerging as strong contenders for the future of Angstrom technology nodes. Their potential lies in enhanced device scaling and energy-efficient switching compared to traditional bulk semiconductors like Si, Ge, and III-V compounds. These materials offer significant advantages, particularly in ultra-thin devices with atomic scale thicknesses. Their unique structures enable the creation of one-dimensional nanoribbons and vertical and lateral heterostructures. This versatility in design, coupled with their distinctive properties, paves the way for efficient energy switching in electronic devices. Moreover, 2-D semiconductors offer opportunities for integrating metallic nanoribbons, carbon nanotubes (CNT), and graphene with their 2-D channel materials. This integration helps overcome lithography limitations for gate patterning, allowing the realization of ultra-short gate dimensions. Considering these factors, the potential of 2-D semiconductors in electronics is vast. This concise review focuses on the latest advancements and engineering strategies in 2-D logic devices.
{"title":"Two-dimensional semiconductors based field-effect transistors: review of major milestones and challenges","authors":"Keshari Nandan, Amit Agarwal, Somnath Bhowmick, Yogesh S. Chauhan","doi":"10.3389/felec.2023.1277927","DOIUrl":"https://doi.org/10.3389/felec.2023.1277927","url":null,"abstract":"Two-dimensional (2-D) semiconductors are emerging as strong contenders for the future of Angstrom technology nodes. Their potential lies in enhanced device scaling and energy-efficient switching compared to traditional bulk semiconductors like Si, Ge, and III-V compounds. These materials offer significant advantages, particularly in ultra-thin devices with atomic scale thicknesses. Their unique structures enable the creation of one-dimensional nanoribbons and vertical and lateral heterostructures. This versatility in design, coupled with their distinctive properties, paves the way for efficient energy switching in electronic devices. Moreover, 2-D semiconductors offer opportunities for integrating metallic nanoribbons, carbon nanotubes (CNT), and graphene with their 2-D channel materials. This integration helps overcome lithography limitations for gate patterning, allowing the realization of ultra-short gate dimensions. Considering these factors, the potential of 2-D semiconductors in electronics is vast. This concise review focuses on the latest advancements and engineering strategies in 2-D logic devices.","PeriodicalId":73081,"journal":{"name":"Frontiers in electronics","volume":"36 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135430396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-13DOI: 10.3389/felec.2023.1178703
Wei Wang, Zhenya Ji, Haimeng Wu, Z. Jaffery, Yipeng Wu, Ming Xue, Linlin Tan
{"title":"Editorial: Re-electrification technology and application of the energy consumption terminal","authors":"Wei Wang, Zhenya Ji, Haimeng Wu, Z. Jaffery, Yipeng Wu, Ming Xue, Linlin Tan","doi":"10.3389/felec.2023.1178703","DOIUrl":"https://doi.org/10.3389/felec.2023.1178703","url":null,"abstract":"","PeriodicalId":73081,"journal":{"name":"Frontiers in electronics","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139319584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-12DOI: 10.3389/felec.2023.1250655
Sofia Drakopoulou, Francesc Varkevisser, Linta Sohail, Masoumeh Aqamolaei, Tiago L. Costa, George D. Spyropoulos
Responsive neuromodulation is increasingly being used to treat patients with neuropsychiatric diseases. Yet, inefficient bridges between traditional and new materials and technological innovations impede advancements in neurostimulation tools. Signaling in the brain is accomplished predominantly by ion flux rather than the movement of electrons. However, the status quo for the acquisition of neural signals is using materials, such as noble metals, that can only interact with electrons. As a result, ions accumulate at the biotic/abiotic interface, creating a double-layer capacitance that increases impedance and negatively impacts the efficiency of neural interrogation. Alternative materials, such as conducting polymers, allow ion penetration in the matrix, creating a volumetric capacitor (two orders of magnitude larger than an area-dependent capacitor) that lowers the impedance and increases the spatiotemporal resolution of the recording/stimulation. On the other hand, the increased development and integration capabilities of CMOS-based back-end electronics have enabled the creation of increasingly powerful and energy-efficient microchips. These include stimulation and recording systems-on-a-chip (SoCs) with up to tens of thousands of channels, fully integrated circuitry for stimulation, signal conditioning, digitation, wireless power and data telemetry, and on-chip signal processing. Here, we aim to compile information on the best component for each building block and try to strengthen the vision that bridges the gap among various materials and technologies in an effort to advance neurostimulation tools and promote a solution-centric way of considering their complex problems.
{"title":"Hybrid neuroelectronics: towards a solution-centric way of thinking about complex problems in neurostimulation tools","authors":"Sofia Drakopoulou, Francesc Varkevisser, Linta Sohail, Masoumeh Aqamolaei, Tiago L. Costa, George D. Spyropoulos","doi":"10.3389/felec.2023.1250655","DOIUrl":"https://doi.org/10.3389/felec.2023.1250655","url":null,"abstract":"Responsive neuromodulation is increasingly being used to treat patients with neuropsychiatric diseases. Yet, inefficient bridges between traditional and new materials and technological innovations impede advancements in neurostimulation tools. Signaling in the brain is accomplished predominantly by ion flux rather than the movement of electrons. However, the status quo for the acquisition of neural signals is using materials, such as noble metals, that can only interact with electrons. As a result, ions accumulate at the biotic/abiotic interface, creating a double-layer capacitance that increases impedance and negatively impacts the efficiency of neural interrogation. Alternative materials, such as conducting polymers, allow ion penetration in the matrix, creating a volumetric capacitor (two orders of magnitude larger than an area-dependent capacitor) that lowers the impedance and increases the spatiotemporal resolution of the recording/stimulation. On the other hand, the increased development and integration capabilities of CMOS-based back-end electronics have enabled the creation of increasingly powerful and energy-efficient microchips. These include stimulation and recording systems-on-a-chip (SoCs) with up to tens of thousands of channels, fully integrated circuitry for stimulation, signal conditioning, digitation, wireless power and data telemetry, and on-chip signal processing. Here, we aim to compile information on the best component for each building block and try to strengthen the vision that bridges the gap among various materials and technologies in an effort to advance neurostimulation tools and promote a solution-centric way of considering their complex problems.","PeriodicalId":73081,"journal":{"name":"Frontiers in electronics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135885543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-08DOI: 10.3389/felec.2023.1250099
Yonglu Liu, Yiqi Zuo, Liang Yuan
Aiming to handle the inherent double-line frequency ripple power in single-phase power systems, a lot of active power decoupling (APD) topologies have been developed. In this paper, a general method is introduced to synthesize APD topologies. The main construction idea is to insert a rectifier/inverter into asymmetrical H-bridge circuits (AHCs) or replace the switch/diode in the AHCs with a rectifier/inverter. This approach not only reveals the formation process of existing APD topologies but also deduces new APD topologies. Finally, an experimental case study has been carried out to illustrate the feasibility and effectiveness of the proposed topology synthesis method.
{"title":"Topology synthesis of integrated active power decoupling converters using asymmetrical H-bridge circuits","authors":"Yonglu Liu, Yiqi Zuo, Liang Yuan","doi":"10.3389/felec.2023.1250099","DOIUrl":"https://doi.org/10.3389/felec.2023.1250099","url":null,"abstract":"Aiming to handle the inherent double-line frequency ripple power in single-phase power systems, a lot of active power decoupling (APD) topologies have been developed. In this paper, a general method is introduced to synthesize APD topologies. The main construction idea is to insert a rectifier/inverter into asymmetrical H-bridge circuits (AHCs) or replace the switch/diode in the AHCs with a rectifier/inverter. This approach not only reveals the formation process of existing APD topologies but also deduces new APD topologies. Finally, an experimental case study has been carried out to illustrate the feasibility and effectiveness of the proposed topology synthesis method.","PeriodicalId":73081,"journal":{"name":"Frontiers in electronics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45243590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The charging modules of Electric vehicles (EVs) always run in a complex and variable state. As the weakness in the reliable operation of charging modules, the accurate lifetime prediction of aluminum electrolytic capacitors (Al-caps) is important for the later maintenance and reliability design. The hotspot temperature calculation method and lifetime model limit the accuracy of aluminum electrolytic capacitors lifetime prediction methods, which cannot meet the increasing requirements for reliability. In order to solve the problems above, this paper has proposed a hotspot temperature calculation method based on the ripple current with frequency characteristics and the cooling conditions on the heat generation and thermal conductivity of the capacitors. Furthermore, the lifetime model under reference voltage has been constructed with 3D surface fitting toolbox, which describes the trends of capacitor lifetime with ambient temperature and hotspot temperature under the constant voltage condition. Considering the variation of voltage, the multiple lifetime model of capacitor is established with a voltage correction coefficient. With the proposed method, it can be realized about the real-time lifetime prediction of capacitors under multiple operating profiles such as ripple current, thermal dissipation conditions, ambient temperature and operating voltage. Finally, the effectiveness of the proposed method is verified with the annual profiles of a 30 kW EV charging module.
{"title":"Lifetime prediction and reliability analysis for aluminum electrolytic capacitors in EV charging module based on mission profiles","authors":"Hongpeng Liu, Jiahui Qiu, Wei Zhang, Mengyuan Zhang, Z. Dou, Liangliang Chen","doi":"10.3389/felec.2023.1226006","DOIUrl":"https://doi.org/10.3389/felec.2023.1226006","url":null,"abstract":"The charging modules of Electric vehicles (EVs) always run in a complex and variable state. As the weakness in the reliable operation of charging modules, the accurate lifetime prediction of aluminum electrolytic capacitors (Al-caps) is important for the later maintenance and reliability design. The hotspot temperature calculation method and lifetime model limit the accuracy of aluminum electrolytic capacitors lifetime prediction methods, which cannot meet the increasing requirements for reliability. In order to solve the problems above, this paper has proposed a hotspot temperature calculation method based on the ripple current with frequency characteristics and the cooling conditions on the heat generation and thermal conductivity of the capacitors. Furthermore, the lifetime model under reference voltage has been constructed with 3D surface fitting toolbox, which describes the trends of capacitor lifetime with ambient temperature and hotspot temperature under the constant voltage condition. Considering the variation of voltage, the multiple lifetime model of capacitor is established with a voltage correction coefficient. With the proposed method, it can be realized about the real-time lifetime prediction of capacitors under multiple operating profiles such as ripple current, thermal dissipation conditions, ambient temperature and operating voltage. Finally, the effectiveness of the proposed method is verified with the annual profiles of a 30 kW EV charging module.","PeriodicalId":73081,"journal":{"name":"Frontiers in electronics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47333068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-10DOI: 10.3389/felec.2023.1144383
A. Jalilian, D. Robinson
The power swing characteristic of transmission lines (TLs) can be affected by the large-scale integration of inverter-based resources (IBRs), resulting in the maloperation of the legacy power swing blocking (PSB) and out-of-step tripping (OST) functions. This paper presents a brief review of power swing phenomena and the impact on power swing protection functions. In this regard, the impact of IBR integration of type-III, and type-IV wind turbine generation (WTG) on legacy power swing protection functions has been scrutinized. To do so, the performance of impedance-based PSB and OST functions during the IBR integration has been investigated via comprehensive simulation studies. The results show that under a system contingency and high IBR penetration, depending on the IBR technology, the system experiences frequency oscillations and swinging impedance trajectories which are different from those from synchronous generators, such that the reliable operation of the legacy PSB and OST functions can be jeopardized. Moreover, during power swing phenomena, the simulation results have found that the security of distance protection cannot be guaranteed and the fault ride-through requirements cannot be maintained when a high share of IBRs have been integrated.
{"title":"Impact of inverter-based resources on transmission line relaying -part II: power swing protection","authors":"A. Jalilian, D. Robinson","doi":"10.3389/felec.2023.1144383","DOIUrl":"https://doi.org/10.3389/felec.2023.1144383","url":null,"abstract":"The power swing characteristic of transmission lines (TLs) can be affected by the large-scale integration of inverter-based resources (IBRs), resulting in the maloperation of the legacy power swing blocking (PSB) and out-of-step tripping (OST) functions. This paper presents a brief review of power swing phenomena and the impact on power swing protection functions. In this regard, the impact of IBR integration of type-III, and type-IV wind turbine generation (WTG) on legacy power swing protection functions has been scrutinized. To do so, the performance of impedance-based PSB and OST functions during the IBR integration has been investigated via comprehensive simulation studies. The results show that under a system contingency and high IBR penetration, depending on the IBR technology, the system experiences frequency oscillations and swinging impedance trajectories which are different from those from synchronous generators, such that the reliable operation of the legacy PSB and OST functions can be jeopardized. Moreover, during power swing phenomena, the simulation results have found that the security of distance protection cannot be guaranteed and the fault ride-through requirements cannot be maintained when a high share of IBRs have been integrated.","PeriodicalId":73081,"journal":{"name":"Frontiers in electronics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46666680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-18DOI: 10.3389/felec.2023.1173607
Delwar Hossain, Tonmoy Ghosh, Masudul Haider Imtiaz, E. Sazonov
Introduction: This paper presents a novel Ear Canal Pressure Sensor (ECPS) for objective detection of food intake, chew counting, and food image capture in both controlled and free-living conditions. The contribution of this study is threefold: 1) Development and validation of a novel wearable sensor that uses changes in ear canal pressure and the device’s acceleration as an indicator of food intake, 2) A method to identify chewing segments and count the number of chews in each eating episode, and 3) Facilitation of egocentric image capture only during eating by triggering camera from sensor detection thus reducing power consumption, privacy concerns, as well as storage and computational cost.Methods: To validate the device, data were collected from 10 volunteers in a controlled environment and three volunteers in a free-living environment. During the controlled activities, each participant wore the device for approximately 1 h, and during the free living for approximately 12 h. The food intake of the participants was not restricted in any way in both part of the experiment. Subject-independent Support Vector Machine classifiers were trained to identify periods of food intake from the features of both the pressure sensor and accelerometer, and features only from the pressure sensor.Results: Results from leave-one-out cross-validation showed an average 5 sec-epoch classification F-score of 87.6% using only pressure sensor features and 88.6% using features from both pressure sensor and accelerometer in the controlled environment. For the free-living environment, both classifiers accurately detected all eating episodes. The wearable sensor achieves 95.5% accuracy in counting the number of chews with respect to manual annotation from the videos of the eating episodes using a pressure sensor classifier in the controlled environment.Discussion: The manual review of the images found that only 3.7% of captured images belonged to the detected eating episodes, suggesting that sensor-triggered camera capture may facilitate reducing the number of captured images and power consumption of the sensor.
{"title":"Ear canal pressure sensor for food intake detection","authors":"Delwar Hossain, Tonmoy Ghosh, Masudul Haider Imtiaz, E. Sazonov","doi":"10.3389/felec.2023.1173607","DOIUrl":"https://doi.org/10.3389/felec.2023.1173607","url":null,"abstract":"Introduction: This paper presents a novel Ear Canal Pressure Sensor (ECPS) for objective detection of food intake, chew counting, and food image capture in both controlled and free-living conditions. The contribution of this study is threefold: 1) Development and validation of a novel wearable sensor that uses changes in ear canal pressure and the device’s acceleration as an indicator of food intake, 2) A method to identify chewing segments and count the number of chews in each eating episode, and 3) Facilitation of egocentric image capture only during eating by triggering camera from sensor detection thus reducing power consumption, privacy concerns, as well as storage and computational cost.Methods: To validate the device, data were collected from 10 volunteers in a controlled environment and three volunteers in a free-living environment. During the controlled activities, each participant wore the device for approximately 1 h, and during the free living for approximately 12 h. The food intake of the participants was not restricted in any way in both part of the experiment. Subject-independent Support Vector Machine classifiers were trained to identify periods of food intake from the features of both the pressure sensor and accelerometer, and features only from the pressure sensor.Results: Results from leave-one-out cross-validation showed an average 5 sec-epoch classification F-score of 87.6% using only pressure sensor features and 88.6% using features from both pressure sensor and accelerometer in the controlled environment. For the free-living environment, both classifiers accurately detected all eating episodes. The wearable sensor achieves 95.5% accuracy in counting the number of chews with respect to manual annotation from the videos of the eating episodes using a pressure sensor classifier in the controlled environment.Discussion: The manual review of the images found that only 3.7% of captured images belonged to the detected eating episodes, suggesting that sensor-triggered camera capture may facilitate reducing the number of captured images and power consumption of the sensor.","PeriodicalId":73081,"journal":{"name":"Frontiers in electronics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42364188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}