GeMSyD: Generic Framework for Synthetic Data Generation

Data Pub Date : 2024-01-11 DOI:10.3390/data9010014
Ramona Tolas, Raluca Portase, R. Potolea
{"title":"GeMSyD: Generic Framework for Synthetic Data Generation","authors":"Ramona Tolas, Raluca Portase, R. Potolea","doi":"10.3390/data9010014","DOIUrl":null,"url":null,"abstract":"In the era of data-driven technologies, the need for diverse and high-quality datasets for training and testing machine learning models has become increasingly critical. In this article, we present a versatile methodology, the Generic Methodology for Constructing Synthetic Data Generation (GeMSyD), which addresses the challenge of synthetic data creation in the context of smart devices. GeMSyD provides a framework that enables the generation of synthetic datasets, aligning them closely with real-world data. To demonstrate the utility of GeMSyD, we instantiate the methodology by constructing a synthetic data generation framework tailored to the domain of event-based data modeling, specifically focusing on user interactions with smart devices. Our framework leverages GeMSyD to create synthetic datasets that faithfully emulate the dynamics of human–device interactions, including the temporal dependencies. Furthermore, we showcase how the synthetic data generated using our framework can serve as a valuable resource for machine learning practitioners. By employing these synthetic datasets, we perform a series of experiments to evaluate the performance of a neural-network-based prediction model in the domain of smart device interaction. Our results underscore the potential of synthetic data in facilitating model development and benchmarking.","PeriodicalId":502371,"journal":{"name":"Data","volume":" 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/data9010014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the era of data-driven technologies, the need for diverse and high-quality datasets for training and testing machine learning models has become increasingly critical. In this article, we present a versatile methodology, the Generic Methodology for Constructing Synthetic Data Generation (GeMSyD), which addresses the challenge of synthetic data creation in the context of smart devices. GeMSyD provides a framework that enables the generation of synthetic datasets, aligning them closely with real-world data. To demonstrate the utility of GeMSyD, we instantiate the methodology by constructing a synthetic data generation framework tailored to the domain of event-based data modeling, specifically focusing on user interactions with smart devices. Our framework leverages GeMSyD to create synthetic datasets that faithfully emulate the dynamics of human–device interactions, including the temporal dependencies. Furthermore, we showcase how the synthetic data generated using our framework can serve as a valuable resource for machine learning practitioners. By employing these synthetic datasets, we perform a series of experiments to evaluate the performance of a neural-network-based prediction model in the domain of smart device interaction. Our results underscore the potential of synthetic data in facilitating model development and benchmarking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GeMSyD:合成数据生成通用框架
在数据驱动技术的时代,对用于训练和测试机器学习模型的多样化高质量数据集的需求变得越来越迫切。在本文中,我们提出了一种通用方法论--合成数据生成通用方法论(GeMSyD),以应对智能设备背景下合成数据创建的挑战。GeMSyD 提供了一个能够生成合成数据集的框架,使其与真实世界的数据紧密结合。为了证明 GeMSyD 的实用性,我们构建了一个合成数据生成框架,专门针对基于事件的数据建模领域,特别是用户与智能设备的交互,将该方法实例化。我们的框架利用 GeMSyD 创建合成数据集,忠实模拟人与设备的交互动态,包括时间依赖关系。此外,我们还展示了使用我们的框架生成的合成数据如何成为机器学习从业人员的宝贵资源。通过使用这些合成数据集,我们进行了一系列实验,以评估基于神经网络的预测模型在智能设备交互领域的性能。我们的结果凸显了合成数据在促进模型开发和基准测试方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SparrKULee: A Speech-Evoked Auditory Response Repository from KU Leuven, Containing the EEG of 85 Participants Bootstrap Method as a Tool for Analyzing Data with Atypical Distributions Deviating from Parametric Assumptions: Critique and Effectiveness Evaluation SaBi3d—A LiDAR Point Cloud Data Set of Car-to-Bicycle Overtaking Maneuvers Data Descriptor of Snakebites in Brazil from 2007 to 2020 Optimizing Database Performance in Complex Event Processing through Indexing Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1