SparrKULee: A Speech-Evoked Auditory Response Repository from KU Leuven, Containing the EEG of 85 Participants

Data Pub Date : 2024-07-26 DOI:10.3390/data9080094
Bernd Accou, Lies Bollens, Marlies Gillis, Wendy Verheijen, Hugo Van hamme, T. Francart
{"title":"SparrKULee: A Speech-Evoked Auditory Response Repository from KU Leuven, Containing the EEG of 85 Participants","authors":"Bernd Accou, Lies Bollens, Marlies Gillis, Wendy Verheijen, Hugo Van hamme, T. Francart","doi":"10.3390/data9080094","DOIUrl":null,"url":null,"abstract":"Researchers investigating the neural mechanisms underlying speech perception often employ electroencephalography (EEG) to record brain activity while participants listen to spoken language. The high temporal resolution of EEG enables the study of neural responses to fast and dynamic speech signals. Previous studies have successfully extracted speech characteristics from EEG data and, conversely, predicted EEG activity from speech features. Machine learning techniques are generally employed to construct encoding and decoding models, which necessitate a substantial quantity of data. We present SparrKULee, a Speech-evoked Auditory Repository of EEG data, measured at KU Leuven, comprising 64-channel EEG recordings from 85 young individuals with normal hearing, each of whom listened to 90–150 min of natural speech. This dataset is more extensive than any currently available dataset in terms of both the number of participants and the quantity of data per participant. It is suitable for training larger machine learning models. We evaluate the dataset using linear and state-of-the-art non-linear models in a speech encoding/decoding and match/mismatch paradigm, providing benchmark scores for future research.","PeriodicalId":502371,"journal":{"name":"Data","volume":"51 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/data9080094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Researchers investigating the neural mechanisms underlying speech perception often employ electroencephalography (EEG) to record brain activity while participants listen to spoken language. The high temporal resolution of EEG enables the study of neural responses to fast and dynamic speech signals. Previous studies have successfully extracted speech characteristics from EEG data and, conversely, predicted EEG activity from speech features. Machine learning techniques are generally employed to construct encoding and decoding models, which necessitate a substantial quantity of data. We present SparrKULee, a Speech-evoked Auditory Repository of EEG data, measured at KU Leuven, comprising 64-channel EEG recordings from 85 young individuals with normal hearing, each of whom listened to 90–150 min of natural speech. This dataset is more extensive than any currently available dataset in terms of both the number of participants and the quantity of data per participant. It is suitable for training larger machine learning models. We evaluate the dataset using linear and state-of-the-art non-linear models in a speech encoding/decoding and match/mismatch paradigm, providing benchmark scores for future research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SparrKULee:鲁汶大学语音诱发听觉反应存储库,包含 85 名参与者的脑电图信息
研究语音感知神经机制的研究人员通常会使用脑电图(EEG)来记录参与者聆听口语时的大脑活动。脑电图的时间分辨率高,可以研究神经对快速和动态语音信号的反应。以往的研究已经成功地从脑电图数据中提取了语音特征,反之,也从语音特征中预测了脑电图活动。机器学习技术通常用于构建编码和解码模型,这需要大量的数据。我们介绍的 SparrKULee 是在鲁汶工程大学测量的语音诱发听觉脑电图数据存储库,由 85 名听力正常的年轻人的 64 个通道脑电图记录组成,每个人都听了 90-150 分钟的自然语音。无论从参与者人数还是从每个参与者的数据量来看,该数据集都比目前可用的任何数据集都要广泛。它适用于训练较大的机器学习模型。我们在语音编码/解码和匹配/错配范例中使用线性模型和最先进的非线性模型对数据集进行了评估,为未来的研究提供了基准分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SparrKULee: A Speech-Evoked Auditory Response Repository from KU Leuven, Containing the EEG of 85 Participants Bootstrap Method as a Tool for Analyzing Data with Atypical Distributions Deviating from Parametric Assumptions: Critique and Effectiveness Evaluation SaBi3d—A LiDAR Point Cloud Data Set of Car-to-Bicycle Overtaking Maneuvers Data Descriptor of Snakebites in Brazil from 2007 to 2020 Optimizing Database Performance in Complex Event Processing through Indexing Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1