{"title":"MsDC-DEQ-Net: Deep Equilibrium Model (DEQ) with Multiscale Dilated Convolution for Image Compressive Sensing (CS)","authors":"Youhao Yu, Richard M. Dansereau","doi":"10.1049/2024/6666549","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Compressive sensing (CS) is a technique that enables the recovery of sparse signals using fewer measurements than traditional sampling methods. To address the computational challenges of CS reconstruction, our objective is to develop an interpretable and concise neural network model for reconstructing natural images using CS. We achieve this by mapping one step of the iterative shrinkage thresholding algorithm (ISTA) to a deep network block, representing one iteration of ISTA. To enhance learning ability and incorporate structural diversity, we integrate aggregated residual transformations (ResNeXt) and squeeze-and-excitation mechanisms into the ISTA block. This block serves as a deep equilibrium layer connected to a semi-tensor product network for convenient sampling and providing an initial reconstruction. The resulting model, called MsDC-DEQ-Net, exhibits competitive performance compared to state-of-the-art network-based methods. It significantly reduces storage requirements compared to deep unrolling methods, using only one iteration block instead of multiple iterations. Unlike deep unrolling models, MsDC-DEQ-Net can be iteratively used, gradually improving reconstruction accuracy while considering computation tradeoffs. Additionally, the model benefits from multiscale dilated convolutions, further enhancing performance.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6666549","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/6666549","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Compressive sensing (CS) is a technique that enables the recovery of sparse signals using fewer measurements than traditional sampling methods. To address the computational challenges of CS reconstruction, our objective is to develop an interpretable and concise neural network model for reconstructing natural images using CS. We achieve this by mapping one step of the iterative shrinkage thresholding algorithm (ISTA) to a deep network block, representing one iteration of ISTA. To enhance learning ability and incorporate structural diversity, we integrate aggregated residual transformations (ResNeXt) and squeeze-and-excitation mechanisms into the ISTA block. This block serves as a deep equilibrium layer connected to a semi-tensor product network for convenient sampling and providing an initial reconstruction. The resulting model, called MsDC-DEQ-Net, exhibits competitive performance compared to state-of-the-art network-based methods. It significantly reduces storage requirements compared to deep unrolling methods, using only one iteration block instead of multiple iterations. Unlike deep unrolling models, MsDC-DEQ-Net can be iteratively used, gradually improving reconstruction accuracy while considering computation tradeoffs. Additionally, the model benefits from multiscale dilated convolutions, further enhancing performance.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf