Achieving ultra-high strength of laser powder bed fusion TiN nanoparticles reinforced AlMnMgScZr composite via a high volume density of L12-nanoprecipitates

IF 4.2 Q2 ENGINEERING, MANUFACTURING Additive manufacturing letters Pub Date : 2024-01-26 DOI:10.1016/j.addlet.2024.100198
Hao Tang , Chaofeng Gao , Xiaoying Xi , Jiantao Zhang , Xingyi Li , Zhiyu Xiao , Jeremy Heng Rao
{"title":"Achieving ultra-high strength of laser powder bed fusion TiN nanoparticles reinforced AlMnMgScZr composite via a high volume density of L12-nanoprecipitates","authors":"Hao Tang ,&nbsp;Chaofeng Gao ,&nbsp;Xiaoying Xi ,&nbsp;Jiantao Zhang ,&nbsp;Xingyi Li ,&nbsp;Zhiyu Xiao ,&nbsp;Jeremy Heng Rao","doi":"10.1016/j.addlet.2024.100198","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a novel design strategy for <span>l</span>-PBFed AlMnMgScZr/TiN composites with ultrahigh strength was proposed. TiN particles can not only function as ceramic reinforcement, but also decompose and reprecipitate to form a large density of L1<sub>2</sub>-precipitates at a high melting temperature during <span>l</span>-PBF. Meanwhile, the primary L1<sub>2</sub>-Al<sub>3</sub>X (<em>X</em>=Ti/Sc/Zr) phase promotes the columnar-to-equiaxed grain transition effect, creating a fine bi-modal grain structure in the as-built sample. A high volume fraction of L1<sub>2</sub> nanoparticles are additionally precipitated from Al matrix during post heat treatment. In this regard, effective grain refinement and precipitation hardening mechanism contribute to an excellent tensile performance with a combination of an ultimate tensile strength of 681±4 MPa, a yield strength of 677±4 MPa, and an elongation rate of 5.4 ± 1.2%. The yield strength of 677 MPa is particularly the highest among all previously reported <span>l</span>-PBFed Al matrix composites and Al alloys.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772369024000070/pdfft?md5=890033fade8dbfb8be12c1fcccbdaa09&pid=1-s2.0-S2772369024000070-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369024000070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a novel design strategy for l-PBFed AlMnMgScZr/TiN composites with ultrahigh strength was proposed. TiN particles can not only function as ceramic reinforcement, but also decompose and reprecipitate to form a large density of L12-precipitates at a high melting temperature during l-PBF. Meanwhile, the primary L12-Al3X (X=Ti/Sc/Zr) phase promotes the columnar-to-equiaxed grain transition effect, creating a fine bi-modal grain structure in the as-built sample. A high volume fraction of L12 nanoparticles are additionally precipitated from Al matrix during post heat treatment. In this regard, effective grain refinement and precipitation hardening mechanism contribute to an excellent tensile performance with a combination of an ultimate tensile strength of 681±4 MPa, a yield strength of 677±4 MPa, and an elongation rate of 5.4 ± 1.2%. The yield strength of 677 MPa is particularly the highest among all previously reported l-PBFed Al matrix composites and Al alloys.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过高体积密度的 L12 纳米沉淀物实现激光粉末床熔融 TiN 纳米粒子增强 AlMnMgScZr 复合材料的超高强度
本文提出了一种具有超高强度的 l-PBFed AlMnMgScZr/TiN 复合材料的新型设计策略。TiN 颗粒不仅能起到陶瓷增强的作用,还能在 l-PBF 过程中的高熔化温度下分解和再沉淀,形成高密度的 L12 沉淀物。同时,原生 L12-Al3X(X=Ti/Sc/Zr)相促进了柱状晶粒向等轴晶粒的转变效应,在坯体样品中形成了精细的双模态晶粒结构。此外,在后热处理过程中,铝基体中还析出了高体积分数的 L12 纳米颗粒。在这方面,有效的晶粒细化和沉淀硬化机制有助于实现优异的拉伸性能,包括 681±4 兆帕的极限拉伸强度、677±4 兆帕的屈服强度和 5.4 ± 1.2% 的伸长率。尤其是 677 兆帕的屈服强度,是之前报道的所有 l-PBFed 铝基复合材料和铝合金中最高的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
期刊最新文献
Modelling process monitoring data in laser powder bed fusion: A pragmatic route to additive manufacturing quality assurance Drop-on-demand 3D printing of programable magnetic composites for soft robotics In-situ heating TEM observation of solidification cell evolutions in an Al-Fe alloy built by laser-powder bed fusion A non-melting additive approach to structural repair of aluminum aircraft fastener holes Enabling tailored microstructures by hybrid directed energy deposition processing of a nickel-based superalloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1