Dispersoid coarsening and slag formation during melt-based additive manufacturing of MA754

IF 4.2 Q2 ENGINEERING, MANUFACTURING Additive manufacturing letters Pub Date : 2024-01-17 DOI:10.1016/j.addlet.2024.100195
Timothy Stubbs , Roger Hou , Donovan N. Leonard , Lisa DeBeer-Schmitt , Yuman Zhu , Zachary C. Cordero , Aijun Huang
{"title":"Dispersoid coarsening and slag formation during melt-based additive manufacturing of MA754","authors":"Timothy Stubbs ,&nbsp;Roger Hou ,&nbsp;Donovan N. Leonard ,&nbsp;Lisa DeBeer-Schmitt ,&nbsp;Yuman Zhu ,&nbsp;Zachary C. Cordero ,&nbsp;Aijun Huang","doi":"10.1016/j.addlet.2024.100195","DOIUrl":null,"url":null,"abstract":"<div><p>We have assessed the structural evolution and dispersoid coarsening behaviors of the oxide dispersion-strengthened superalloy MA754 during two different melt-based additive manufacturing techniques – metal laser powder bed fusion (PBF-LB/M) and directed energy deposition (DED). The mechanically alloyed MA754 powder posed challenges for both processes due to its irregular flaky morphology and large particle size. Successful consolidation with PBF-LB/M required increasing the layer height, decreasing the scanning speed, and increasing the laser power relative to typical Ni superalloy printing parameters. The resulting materials contained residual porosity and large Y-Al-oxide slag inclusions which formed in situ. The more prolonged thermal excursion during DED resulted in even larger, mm-scale slag inclusions, which spanned several build layers. In both PBF-LB/M and DED, these inclusions grew at the expense of nanoscale dispersoids, depleting the material of this strengthening phase. These observations motivate alternative approaches for preparing dispersion-strengthened powder feedstocks besides mechanical alloying and highlight the deleterious effects of Al microalloying on dispersoid stability and structure.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"9 ","pages":"Article 100195"},"PeriodicalIF":4.2000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772369024000045/pdfft?md5=b241d7143626936f4d63b7fda43ee1cb&pid=1-s2.0-S2772369024000045-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369024000045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

We have assessed the structural evolution and dispersoid coarsening behaviors of the oxide dispersion-strengthened superalloy MA754 during two different melt-based additive manufacturing techniques – metal laser powder bed fusion (PBF-LB/M) and directed energy deposition (DED). The mechanically alloyed MA754 powder posed challenges for both processes due to its irregular flaky morphology and large particle size. Successful consolidation with PBF-LB/M required increasing the layer height, decreasing the scanning speed, and increasing the laser power relative to typical Ni superalloy printing parameters. The resulting materials contained residual porosity and large Y-Al-oxide slag inclusions which formed in situ. The more prolonged thermal excursion during DED resulted in even larger, mm-scale slag inclusions, which spanned several build layers. In both PBF-LB/M and DED, these inclusions grew at the expense of nanoscale dispersoids, depleting the material of this strengthening phase. These observations motivate alternative approaches for preparing dispersion-strengthened powder feedstocks besides mechanical alloying and highlight the deleterious effects of Al microalloying on dispersoid stability and structure.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于熔体的 MA754 添加剂制造过程中的粒径变粗和熔渣形成
我们评估了氧化物分散强化超级合金 MA754 在两种不同的基于熔体的增材制造技术--金属激光粉末床熔融 (PBF-LB/M) 和定向能沉积 (DED) 过程中的结构演变和分散粗化行为。机械合金 MA754 粉末由于其不规则的片状形态和较大的颗粒尺寸,给这两种工艺都带来了挑战。与典型的镍超合金印刷参数相比,使用 PBF-LB/M 成功固结需要增加层高、降低扫描速度和增加激光功率。由此产生的材料含有残留孔隙和原位形成的大量 YAl-oxide 熔渣夹杂物。DED 期间更长时间的热偏移导致了更大的、毫米级的熔渣夹杂物,这些夹杂物跨越了几个构建层。在 PBF-LB/M 和 DED 中,这些夹杂物的增长都以纳米级分散体为代价,从而消耗了材料中的强化相。这些观察结果为制备分散强化粉末原料提供了除机械合金化以外的其他方法,并强调了铝微合金化对分散体稳定性和结构的有害影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
期刊最新文献
A new process route for the additive manufacturing of a high nitrogen containing martensitic stainless steel - A feasibility study Additive manufacturing simulations: An approach based on space partitioning and dynamic 3D mesh adaptation Understanding the effect of pre-sintering scanning strategy on the relative density of Zr-modified Al7075 processed by laser powder bed fusion Mechanical performance of laser powder bed fused Ti-6Al-4V: The influence of filter condition and part location Area-based composition predictions of materials fabricated using simultaneous wire-powder-directed energy deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1