{"title":"From food waste to high-capacity hard carbon for rechargeable sodium-ion batteries","authors":"Madina Kalibek , Lunara Rakhymbay , Zhanar Zhakiyeva , Zhumabay Bakenov , Seung-Taek Myung , Aishuak Konarov","doi":"10.1016/j.crcon.2024.100225","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we introduce a straightforward and effective approach to produce P-doped hard carbon using coffee grounds as the precursor, with H<sub>3</sub>PO<sub>4</sub> serving as the doping agent. By varying the concentrations of H<sub>3</sub>PO<sub>4</sub> (1 M, 2 M, and 3 M), we aimed to determine the optimal doping level for maximizing the incorporation of phosphorus ions into the carbon framework. Our investigation revealed that using 2 M of H<sub>3</sub>PO<sub>4</sub> as the dopant material for hard carbon led to promising electrochemical performance when employed as an anode material for sodium-ion batteries. The P-doped hard carbon, carbonized at 1300 °C, exhibited an impressive reversible capacity of 341 mAh g<sup>−1</sup> at a current density of 20 mA g<sup>−1</sup>, with an initial Coulombic efficiency (ICE) of 83 %. This outstanding electrochemical performance of P-doped hard carbon can be attributed to its unique properties, including a porous agglomerated structure, a significant interlayer spacing, and the formation of C–P bonds.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 3","pages":"Article 100225"},"PeriodicalIF":6.4000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913324000140/pdfft?md5=222ad98950c719971672d55bdc2086ea&pid=1-s2.0-S2588913324000140-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Resources Conversion","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588913324000140","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we introduce a straightforward and effective approach to produce P-doped hard carbon using coffee grounds as the precursor, with H3PO4 serving as the doping agent. By varying the concentrations of H3PO4 (1 M, 2 M, and 3 M), we aimed to determine the optimal doping level for maximizing the incorporation of phosphorus ions into the carbon framework. Our investigation revealed that using 2 M of H3PO4 as the dopant material for hard carbon led to promising electrochemical performance when employed as an anode material for sodium-ion batteries. The P-doped hard carbon, carbonized at 1300 °C, exhibited an impressive reversible capacity of 341 mAh g−1 at a current density of 20 mA g−1, with an initial Coulombic efficiency (ICE) of 83 %. This outstanding electrochemical performance of P-doped hard carbon can be attributed to its unique properties, including a porous agglomerated structure, a significant interlayer spacing, and the formation of C–P bonds.
期刊介绍:
Carbon Resources Conversion (CRC) publishes fundamental studies and industrial developments regarding relevant technologies aiming for the clean, efficient, value-added, and low-carbon utilization of carbon-containing resources as fuel for energy and as feedstock for materials or chemicals from, for example, fossil fuels, biomass, syngas, CO2, hydrocarbons, and organic wastes via physical, thermal, chemical, biological, and other technical methods. CRC also publishes scientific and engineering studies on resource characterization and pretreatment, carbon material innovation and production, clean technologies related to carbon resource conversion and utilization, and various process-supporting technologies, including on-line or off-line measurement and monitoring, modeling, simulations focused on safe and efficient process operation and control, and process and equipment optimization.