Tunnel SAM adapter: Adapting segment anything model for tunnel water leakage inspection

Junxin Chen , Xiaojie Yu , Shichang Liu , Tao Chen , Wei Wang , Gwanggil Jeon , Benguo He
{"title":"Tunnel SAM adapter: Adapting segment anything model for tunnel water leakage inspection","authors":"Junxin Chen ,&nbsp;Xiaojie Yu ,&nbsp;Shichang Liu ,&nbsp;Tao Chen ,&nbsp;Wei Wang ,&nbsp;Gwanggil Jeon ,&nbsp;Benguo He","doi":"10.1016/j.ghm.2024.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>Water leakage inspection in the tunnels is a critical engineering job that has attracted increasing concerns. Leakage area detection via manual inspection techniques is time-consuming and might produce unreliable findings, so that automated techniques should be created to increase reliability and efficiency. Pre-trained foundational segmentation models for large datasets have attracted great interests recently. This paper proposes a novel SAM-based network for accurate automated water leakage inspection. The contributions of this paper include the efficient adaptation of the SAM (Segment Anything Model) for shield tunnel water leakage segmentation and the demonstration of the application effect by data experiments. Tunnel SAM Adapter has satisfactory performance, achieving 76.2 ​% mIoU and 77.5 ​% Dice. Experimental results demonstrate that our approach has advantages over peer studies and guarantees the integrity and safety of these vital assets while streamlining tunnel maintenance.</p></div>","PeriodicalId":100580,"journal":{"name":"Geohazard Mechanics","volume":"2 1","pages":"Pages 29-36"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949741824000013/pdfft?md5=0cc32856a6b44b1f3d70c6efbdad5154&pid=1-s2.0-S2949741824000013-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohazard Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949741824000013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Water leakage inspection in the tunnels is a critical engineering job that has attracted increasing concerns. Leakage area detection via manual inspection techniques is time-consuming and might produce unreliable findings, so that automated techniques should be created to increase reliability and efficiency. Pre-trained foundational segmentation models for large datasets have attracted great interests recently. This paper proposes a novel SAM-based network for accurate automated water leakage inspection. The contributions of this paper include the efficient adaptation of the SAM (Segment Anything Model) for shield tunnel water leakage segmentation and the demonstration of the application effect by data experiments. Tunnel SAM Adapter has satisfactory performance, achieving 76.2 ​% mIoU and 77.5 ​% Dice. Experimental results demonstrate that our approach has advantages over peer studies and guarantees the integrity and safety of these vital assets while streamlining tunnel maintenance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
隧道 SAM 适配器:为隧道漏水检测调整分段什么模型
隧道漏水检测是一项重要的工程工作,已引起越来越多的关注。通过人工检测技术进行渗漏区域检测既费时又可能产生不可靠的结果,因此应创建自动化技术来提高可靠性和效率。最近,针对大型数据集的预训练基础分割模型引起了人们的极大兴趣。本文提出了一种基于 SAM 的新型网络,用于准确的自动漏水检测。本文的贡献包括将 SAM(Segment Anything Model)有效地适配于盾构隧道漏水细分,并通过数据实验展示了应用效果。隧道 SAM 适配器的性能令人满意,实现了 76.2 % 的 mIoU 和 77.5 % 的 Dice。实验结果表明,与同行研究相比,我们的方法具有优势,在简化隧道维护工作的同时,保证了这些重要资产的完整性和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Optimization design method of 2D+3D slope shape for landslide prevention in open-pit coal mine Stability prediction of roadway surrounding rock using INGO-RF Leveraging artificial neural networks for robust landslide susceptibility mapping: A geospatial modeling approach in the ecologically sensitive Nilgiri District, Tamil Nadu Prediction of coal and gas outburst hazard using kernel principal component analysis and an enhanced extreme learning machine approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1