3D pipeline reconstruction and diameter measurement method based on target segmentation

Guanghai Wu, Hao Zhang, Zhiqi Yan, Haoyu Wang, Zhihao Zhong, Ziao Yin
{"title":"3D pipeline reconstruction and diameter measurement method based on target segmentation","authors":"Guanghai Wu, Hao Zhang, Zhiqi Yan, Haoyu Wang, Zhihao Zhong, Ziao Yin","doi":"10.1117/12.3014403","DOIUrl":null,"url":null,"abstract":"3D reconstruction technology utilizes 3D data to create models of physical objects. Cameras, laser scanners, and other sensors can be used to gather 3D data of objects, which can be processed using computer graphics technology for creating 3D models through 3D reconstruction technology. In engineering, high-precision 3D reconstruction models can substitute physical pipes for automatic measuring of pipe diameters. This paper proposes a target segmentation-based optimization method for single-frame reconstruction, which enables precise diameter measurement of pipes. Experimental results show that single-frame reconstruction, based on target segmentation technology, produces excellent results in the current application scenario. The proposed method is better adapted to complex construction conditions than the complex reconstruction methods. Complex backgrounds include excessive and uneven distributed light and interfering objects. Using target segmentation technology based on image processing, the MIVOS user-interactive video can produce and distribute the target object mask based on the user's interaction with the video frame. Complex background removal can improve the quality of reconstructed sample images. MIVOS is used to segment the pipe area in the image and remove most of the background noise. Consequently, the process lessens the interference of background noise in the reconstruction results. The proposed method exhibits significant progress in measuring both the inner and outer diameters of pipes when compared to both multi-frame and single-frame reconstruction methods. Their measurements have an average error of no more than 1 mm. The proposed method provides technical guidance for measuring the inner and outer diameters of pipes under complex conditions.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"17 1","pages":"1296929 - 1296929-13"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3014403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

3D reconstruction technology utilizes 3D data to create models of physical objects. Cameras, laser scanners, and other sensors can be used to gather 3D data of objects, which can be processed using computer graphics technology for creating 3D models through 3D reconstruction technology. In engineering, high-precision 3D reconstruction models can substitute physical pipes for automatic measuring of pipe diameters. This paper proposes a target segmentation-based optimization method for single-frame reconstruction, which enables precise diameter measurement of pipes. Experimental results show that single-frame reconstruction, based on target segmentation technology, produces excellent results in the current application scenario. The proposed method is better adapted to complex construction conditions than the complex reconstruction methods. Complex backgrounds include excessive and uneven distributed light and interfering objects. Using target segmentation technology based on image processing, the MIVOS user-interactive video can produce and distribute the target object mask based on the user's interaction with the video frame. Complex background removal can improve the quality of reconstructed sample images. MIVOS is used to segment the pipe area in the image and remove most of the background noise. Consequently, the process lessens the interference of background noise in the reconstruction results. The proposed method exhibits significant progress in measuring both the inner and outer diameters of pipes when compared to both multi-frame and single-frame reconstruction methods. Their measurements have an average error of no more than 1 mm. The proposed method provides technical guidance for measuring the inner and outer diameters of pipes under complex conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于目标细分的三维管道重建和直径测量方法
三维重建技术利用三维数据创建实物模型。照相机、激光扫描仪和其他传感器可用于收集物体的三维数据,然后利用计算机图形技术对这些数据进行处理,从而通过三维重建技术创建三维模型。在工程领域,高精度的三维重建模型可以替代实物管道,用于自动测量管道直径。本文提出了一种基于目标分割的单帧重建优化方法,可实现管道直径的精确测量。实验结果表明,基于目标分割技术的单帧重建在当前的应用场景中取得了优异的效果。与复杂的重建方法相比,所提出的方法能更好地适应复杂的施工条件。复杂背景包括光线过强、分布不均以及干扰物体。利用基于图像处理的目标分割技术,MIVOS 用户交互式视频可根据用户与视频帧的交互,生成并分发目标对象遮罩。复杂的背景去除可以提高重建样本图像的质量。MIVOS 用于分割图像中的管道区域并去除大部分背景噪声。因此,这一过程减少了背景噪声对重建结果的干扰。与多帧和单帧重建方法相比,所提出的方法在测量管道内径和外径方面都有显著进步。其测量结果的平均误差不超过 1 毫米。所提出的方法为在复杂条件下测量管道内径和外径提供了技术指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The ship classification and detection method of optical remote sensing image based on improved YOLOv7-tiny Collaborative filtering recommendation method based on graph convolutional neural networks Research on the simplification of building complex model under multi-factor constraints Improved ant colony algorithm based on artificial gravity field for adaptive dynamic path planning Application analysis of three-dimensional laser scanning technology in the protection of dong drum tower in Sanjiang county
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1