Emma N. Russell , Paul C. Loikith , Idowu Ajibade , James M. Done , Chris Lower
{"title":"The meteorology and impacts of the September 2020 Western United States extreme weather event","authors":"Emma N. Russell , Paul C. Loikith , Idowu Ajibade , James M. Done , Chris Lower","doi":"10.1016/j.wace.2024.100647","DOIUrl":null,"url":null,"abstract":"<div><p>In September 2020, Western North America was impacted by a highly anomalous meteorological event. Over the Pacific Northwest, strong and dry easterly winds exceeded historically observed values for the time of year and contributed to the rapid spread of several large wildfires. Nine lives were lost and over 5000 homes and businesses were destroyed in Oregon. The smoke from the fires enveloped the region for nearly two weeks after the event. Concurrently, the same weather system brought record-breaking cold, dramatic 24-h temperature falls, and early-season snowfall to parts of the Rocky Mountains. Here we use synoptic analysis and air parcel backward trajectories to build a process-based understanding of this extreme event and to put it in a climatological context. The primary atmospheric driver was the rapid development of a highly amplified 500 hPa tropospheric wave pattern that persisted for several days. A record-breaking ridge of high pressure characterized the western side of the wave pattern with a record-breaking trough of low pressure to the east. A notable anticyclonic Rossby wave breaking event occurred as the wave train amplified. Air parcel backward trajectories show that dry air over the Pacific Northwest, which exacerbated the fire danger, originated in the mid-troposphere and descended through subsidence to the surface. At the same time, dramatic temperature falls were recorded along the east side of the Rocky Mountains, driven by strong transport of high-latitude air near the surface.</p></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"43 ","pages":"Article 100647"},"PeriodicalIF":6.1000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000082/pdfft?md5=015c8352c49bb9310b15799b48dca8a0&pid=1-s2.0-S2212094724000082-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Climate Extremes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212094724000082","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In September 2020, Western North America was impacted by a highly anomalous meteorological event. Over the Pacific Northwest, strong and dry easterly winds exceeded historically observed values for the time of year and contributed to the rapid spread of several large wildfires. Nine lives were lost and over 5000 homes and businesses were destroyed in Oregon. The smoke from the fires enveloped the region for nearly two weeks after the event. Concurrently, the same weather system brought record-breaking cold, dramatic 24-h temperature falls, and early-season snowfall to parts of the Rocky Mountains. Here we use synoptic analysis and air parcel backward trajectories to build a process-based understanding of this extreme event and to put it in a climatological context. The primary atmospheric driver was the rapid development of a highly amplified 500 hPa tropospheric wave pattern that persisted for several days. A record-breaking ridge of high pressure characterized the western side of the wave pattern with a record-breaking trough of low pressure to the east. A notable anticyclonic Rossby wave breaking event occurred as the wave train amplified. Air parcel backward trajectories show that dry air over the Pacific Northwest, which exacerbated the fire danger, originated in the mid-troposphere and descended through subsidence to the surface. At the same time, dramatic temperature falls were recorded along the east side of the Rocky Mountains, driven by strong transport of high-latitude air near the surface.
期刊介绍:
Weather and Climate Extremes
Target Audience:
Academics
Decision makers
International development agencies
Non-governmental organizations (NGOs)
Civil society
Focus Areas:
Research in weather and climate extremes
Monitoring and early warning systems
Assessment of vulnerability and impacts
Developing and implementing intervention policies
Effective risk management and adaptation practices
Engagement of local communities in adopting coping strategies
Information and communication strategies tailored to local and regional needs and circumstances