首页 > 最新文献

Weather and Climate Extremes最新文献

英文 中文
Corrigendum to “Increasing extreme flood risk under future climate change scenarios in South Korea” [Weather Clim. Extrem. 39 (2023) 1–12, 100552] 韩国未来气候变化情景下极端洪水风险增加"[Weather Clim. Extrem.
IF 8 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-23 DOI: 10.1016/j.wace.2024.100726
S. Kim, J.-H. Kwon, J.-S. Om, T. Lee, G. Kim, H. Kim, J.-H. Heo
{"title":"Corrigendum to “Increasing extreme flood risk under future climate change scenarios in South Korea” [Weather Clim. Extrem. 39 (2023) 1–12, 100552]","authors":"S. Kim, J.-H. Kwon, J.-S. Om, T. Lee, G. Kim, H. Kim, J.-H. Heo","doi":"10.1016/j.wace.2024.100726","DOIUrl":"https://doi.org/10.1016/j.wace.2024.100726","url":null,"abstract":"","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 2019–21 drought in southern Madagascar 马达加斯加南部 2019-21 年旱灾
IF 6.1 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-23 DOI: 10.1016/j.wace.2024.100723
Two consecutive failed rainy seasons in the southern part of Madagascar in 2019–21 had devastating impacts on the population, including an amplification of the ongoing food insecurity in the area. The drought events were second in severity only to the 1990–92 drought and were estimated in a previous study to have a return period of 135 years. In this study, the physical mechanisms that led to these consecutive drought events are investigated.
We found that the anomalously cold sea surface temperatures (SSTs) that persisted to the south of Madagascar between December 2019 and December 2020 led to a decrease in the transport of moist air over land. These cold SST anomalies were the most negative anomalies in the past four decades and intensified the rainfall deficit resulting from a negative Subtropical Indian Ocean Dipole (SIOD) mode during the rainy season of December 2019 to March 2020 and during December 2020. We also found that the rainfall response to the SST anomaly south of Madagascar was three times greater than that of a canonical SIOD.
A weak Mozambique Channel Trough and a strong Angola low system, on the other hand, modulated the expected above-normal rainfall from a La Niña event in January–February 2021. Our study demonstrates how local factors can modulate the impacts of large-scale drivers, and that both local and global drivers, and their interactions, should be considered when producing seasonal forecasts and advisories, as well as climate change adaptation and mitigation plans for southern Madagascar.
马达加斯加南部地区在 2019-21 年连续两个雨季歉收,对当地居民造成了破坏性影响,包括加剧了该地区当前的粮食不安全状况。这些干旱事件的严重程度仅次于 1990-92 年的干旱,据先前的一项研究估计,其重现期长达 135 年。本研究调查了导致这些连续干旱事件的物理机制。我们发现,2019 年 12 月至 2020 年 12 月期间,马达加斯加南部海面温度(SST)持续异常寒冷,导致陆地湿空气输送减少。这些低温海表温度异常是过去四十年来最负面的异常现象,加剧了 2019 年 12 月至 2020 年 3 月雨季期间和 2020 年 12 月期间亚热带印度洋偶极子(SIOD)负模式导致的降雨不足。我们还发现,马达加斯加以南的降雨量对 SST 异常的响应是典型 SIOD 响应的三倍。另一方面,弱莫桑比克海峡低槽和强安哥拉低气压系统调节了 2021 年 1 月至 2 月拉尼娜事件导致的预期超常降雨量。我们的研究表明,地方因素可以调节大规模驱动因素的影响,在制作马达加斯加南部的季节预报和建议以及气候变化适应和减缓计划时,应同时考虑地方和全球驱动因素及其相互作用。
{"title":"The 2019–21 drought in southern Madagascar","authors":"","doi":"10.1016/j.wace.2024.100723","DOIUrl":"10.1016/j.wace.2024.100723","url":null,"abstract":"<div><div>Two consecutive failed rainy seasons in the southern part of Madagascar in 2019–21 had devastating impacts on the population, including an amplification of the ongoing food insecurity in the area. The drought events were second in severity only to the 1990–92 drought and were estimated in a previous study to have a return period of 135 years. In this study, the physical mechanisms that led to these consecutive drought events are investigated.</div><div>We found that the anomalously cold sea surface temperatures (SSTs) that persisted to the south of Madagascar between December 2019 and December 2020 led to a decrease in the transport of moist air over land. These cold SST anomalies were the most negative anomalies in the past four decades and intensified the rainfall deficit resulting from a negative Subtropical Indian Ocean Dipole (SIOD) mode during the rainy season of December 2019 to March 2020 and during December 2020. We also found that the rainfall response to the SST anomaly south of Madagascar was three times greater than that of a canonical SIOD.</div><div>A weak Mozambique Channel Trough and a strong Angola low system, on the other hand, modulated the expected above-normal rainfall from a La Niña event in January–February 2021. Our study demonstrates how local factors can modulate the impacts of large-scale drivers, and that both local and global drivers, and their interactions, should be considered when producing seasonal forecasts and advisories, as well as climate change adaptation and mitigation plans for southern Madagascar.</div></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intrinsic short Marine Heatwaves from the perspective of sea surface temperature and height 从海面温度和高度角度看固有的短海洋热浪
IF 6.1 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-19 DOI: 10.1016/j.wace.2024.100725
Marine heatwaves (MHWs) have recently been recognized as extreme climate events considering their devastating impacts on marine ecosystems. Our study explored the spatial and temporal variability of short (duration <10 days) and long MHWs in nine sub-regions around the Australian coastal region using the original (5-day) and an updated longer duration (10-day) criteria for MHW identification based on gap-free Sea Surface Temperature (SST) analyses from 1981 to 2020. By quantitatively investigating the contribution of ocean warming to short MHWs, we could consider most of the short events as background signals of a dynamic ocean surface over the Australian region. The application of the updated definition highlights areas that are more sensitive to local internal forcings, especially over the main flow of the East Australian Current. Furthermore, the Great Barrier Reef exhibit a larger increasing trend of MHW areas after excluding the short events. By numerically and graphically evaluating the relationship between the sea level anomaly (SLA) and SST metrics over two coastal regions of Australia, it is found that longer MHWs exhibiting two variation trends of large SLA metrics are ENSO dominant in the northwest coastal region (NW), and less ENSO-dominant but geographically-impacted in the southeast coastal region (SETS). However, it is possible that most short events in these two regions are a result of local and intrinsic variability or ocean warming of the water columns rather than the remote modulation of climate modes. Moreover, SLA over the 90th percentile, which successfully observed a subsurface MHW event over the NW region in 2008, has the potential to help identify subsurface MHWs, although limited by application area. Further investigation into the applicability of these, or other similar, updates to the MHW definitions may be warranted, to draw a broadly applicable conclusion to benefit detection and prediction of strong sub-surface MHWs impacting commercial and environmental activities.
考虑到海洋热浪对海洋生态系统的破坏性影响,海洋热浪(MHWs)最近被认为是极端气候事件。我们的研究探讨了澳大利亚沿海地区 9 个子区域的短海洋热浪(持续时间为 10 天)和长海洋热浪的时空变异性,采用了基于 1981-2020 年无间隙海洋表面温度(SST)分析的原始(5 天)和更新的更长持续时间(10 天)海洋热浪识别标准。通过定量研究海洋变暖对短时 MHW 的影响,我们可以将大部分短时事件视为澳大利亚地区海洋表面动态的背景信号。更新定义的应用凸显了对本地内部作用力更为敏感的区域,尤其是东澳大利亚洋流的主要流经区域。此外,在剔除短时间事件后,大堡礁的最高海平面上升趋势更大。通过对澳大利亚两个沿岸地区海平面异常和 SST 尺度之间关系的数值和图形评估,发现在西北沿岸地区(NW),ENSO 起主导作用,而在东南沿岸地区(SETS),ENSO 起主导作用较小,但受地理因素影响较大。然而,这两个地区的大多数短临事件可能是本地固有变率或海洋水柱变暖的结果,而不是气候模式的远距离调制。此外,超过第 90 百分位数的 SLA 于 2008 年在西北部地区成功观测到了一次次表层 MHW 事件,虽然受到应用领域的限制,但仍有可能帮助识别次表层 MHW。可能有必要进一步调查这些或其他类似的 MHW 定义更新的适用性,以得出广泛适用的结论,从而有利于探测和预测影响商业和环境活动的强烈次表层 MHW。
{"title":"Intrinsic short Marine Heatwaves from the perspective of sea surface temperature and height","authors":"","doi":"10.1016/j.wace.2024.100725","DOIUrl":"10.1016/j.wace.2024.100725","url":null,"abstract":"<div><div>Marine heatwaves (MHWs) have recently been recognized as extreme climate events considering their devastating impacts on marine ecosystems. Our study explored the spatial and temporal variability of short (duration &lt;10 days) and long MHWs in nine sub-regions around the Australian coastal region using the original (5-day) and an updated longer duration (10-day) criteria for MHW identification based on gap-free Sea Surface Temperature (SST) analyses from 1981 to 2020. By quantitatively investigating the contribution of ocean warming to short MHWs, we could consider most of the short events as background signals of a dynamic ocean surface over the Australian region. The application of the updated definition highlights areas that are more sensitive to local internal forcings, especially over the main flow of the East Australian Current. Furthermore, the Great Barrier Reef exhibit a larger increasing trend of MHW areas after excluding the short events. By numerically and graphically evaluating the relationship between the sea level anomaly (SLA) and SST metrics over two coastal regions of Australia, it is found that longer MHWs exhibiting two variation trends of large SLA metrics are ENSO dominant in the northwest coastal region (NW), and less ENSO-dominant but geographically-impacted in the southeast coastal region (SETS). However, it is possible that most short events in these two regions are a result of local and intrinsic variability or ocean warming of the water columns rather than the remote modulation of climate modes. Moreover, SLA over the 90th percentile, which successfully observed a subsurface MHW event over the NW region in 2008, has the potential to help identify subsurface MHWs, although limited by application area. Further investigation into the applicability of these, or other similar, updates to the MHW definitions may be warranted, to draw a broadly applicable conclusion to benefit detection and prediction of strong sub-surface MHWs impacting commercial and environmental activities.</div></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000860/pdfft?md5=341b1461867d6b8129228be8bd35980c&pid=1-s2.0-S2212094724000860-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142315559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contribution of land-atmosphere coupling in 2022 CONUS compound drought-heatwave events and implications for forecasting 2022 年 CONUS 复合干旱-热浪事件中陆地-大气耦合的贡献及其对预报的影响
IF 6.1 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-15 DOI: 10.1016/j.wace.2024.100722

Severe compound drought-heatwave events were observed over three regions of the Contiguous United States (CONUS), Northwest (NW), Great Plains (GP), and Northeast (NE) regions, during July and August 2022. In this study, we have found that the developments of these drought-heatwave events were shaped by different land-atmosphere coupling behaviors which are associated with water and energy limitation regimes in these regions. In the NW and GP regions, the surface soil moisture (SM) and evapotranspiration (ET) were coupled through water-limited processes. Heatwaves in these two regions were affected by the decrease of ET and the available SM due to the precipitation deficit. This type of land-atmosphere coupling was especially prominent in the GP. In the NE region, the heatwave governed ET through the increase of potential ET (PET) based on energy-limited coupling, which played a crucial role in the development of drought.

The impacts of the different land-atmosphere coupling behaviors on the predictability of the 13-km Geophysical Fluid Dynamics Laboratory (GFDL) System for High-resolution prediction on Earth-to-Local Domains (SHiELD) were also investigated by checking its 10-day forecasts during the same period. The analysis was particularly focused on the GP and NE regions, where different land-atmosphere coupling behaviors were observed. The model's warm bias in the GP region was associated with the overestimated net radiation, and the bias was further amplified through the water-limited coupling. In the NE region, the PET-related variables, including surface air temperature, influenced the predictability of drought onset by limiting ET through the energy-limited coupling. Based on our findings, this study highlights the crucial role of land-atmosphere coupling behaviors and provides a scientific strategy for enhancing the model predictability of compound drought-heatwaves.

2022 年 7 月和 8 月期间,在美国西北部(NW)、大平原(GP)和东北部(NE)三个毗连地区观测到了严重的复合干旱热浪事件。在这项研究中,我们发现这些干旱-热浪事件的发展受不同的陆地-大气耦合行为的影响,而这些耦合行为与这些地区的水和能量限制机制有关。在西北地区和 GP 地区,地表土壤水分(SM)和蒸散(ET)通过水分限制过程耦合。这两个地区的热浪受降水不足导致的蒸散发和可用土壤水分减少的影响。这种陆地-大气耦合在 GP 地区尤为突出。在东北部地区,热浪通过基于能量限制耦合的潜在蒸散发(PET)的增加来控制蒸散发,这对干旱的发展起到了至关重要的作用。通过检查地球物理流体动力学实验室(GFDL)13 千米地-局域高分辨率预报系统(SHiELD)在同一时期的 10 天预报,还研究了不同的陆地-大气耦合行为对其可预测性的影响。分析尤其集中在 GP 和东北地区,因为在这两个地区观测到了不同的陆地-大气耦合行为。该模式在 GP 地区的暖偏差与高估的净辐射有关,并且偏差通过水限制耦合进一步放大。在东北部地区,包括地表气温在内的 PET 相关变量通过能量限制耦合限制蒸散发,从而影响了干旱发生的可预测性。基于我们的研究结果,本研究强调了陆地-大气耦合行为的关键作用,并为提高复合干旱-热浪的模式可预测性提供了科学策略。
{"title":"Contribution of land-atmosphere coupling in 2022 CONUS compound drought-heatwave events and implications for forecasting","authors":"","doi":"10.1016/j.wace.2024.100722","DOIUrl":"10.1016/j.wace.2024.100722","url":null,"abstract":"<div><p>Severe compound drought-heatwave events were observed over three regions of the Contiguous United States (CONUS), Northwest (NW), Great Plains (GP), and Northeast (NE) regions, during July and August 2022. In this study, we have found that the developments of these drought-heatwave events were shaped by different land-atmosphere coupling behaviors which are associated with water and energy limitation regimes in these regions. In the NW and GP regions, the surface soil moisture (SM) and evapotranspiration (ET) were coupled through water-limited processes. Heatwaves in these two regions were affected by the decrease of ET and the available SM due to the precipitation deficit. This type of land-atmosphere coupling was especially prominent in the GP. In the NE region, the heatwave governed ET through the increase of potential ET (PET) based on energy-limited coupling, which played a crucial role in the development of drought.</p><p>The impacts of the different land-atmosphere coupling behaviors on the predictability of the 13-km Geophysical Fluid Dynamics Laboratory (GFDL) System for High-resolution prediction on Earth-to-Local Domains (SHiELD) were also investigated by checking its 10-day forecasts during the same period. The analysis was particularly focused on the GP and NE regions, where different land-atmosphere coupling behaviors were observed. The model's warm bias in the GP region was associated with the overestimated net radiation, and the bias was further amplified through the water-limited coupling. In the NE region, the PET-related variables, including surface air temperature, influenced the predictability of drought onset by limiting ET through the energy-limited coupling. Based on our findings, this study highlights the crucial role of land-atmosphere coupling behaviors and provides a scientific strategy for enhancing the model predictability of compound drought-heatwaves.</p></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000835/pdfft?md5=1fbba52bfc1f681f204a5078e035a0f4&pid=1-s2.0-S2212094724000835-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flash drought and heatwave compound events increased in strength and length from 1980 to 2022 in China 从 1980 年到 2022 年,中国暴旱和热浪复合事件的强度和持续时间都在增加
IF 6.1 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-14 DOI: 10.1016/j.wace.2024.100720

Compound flash drought and heatwave (FDHW) events have garnered increasing amounts of attention due to their substantial impacts on agriculture, water resources, and public health. However, studies on their intensity and classification in China are limited. In this study, we classified FDHW events in China from 1980 to 2022 using a classification framework designed to address regional patterns and explore their characteristics further. The results showed that FDHW events in northern China mostly occurred in early to mid-summer, whereas in southern China, excluding the Southwest River Basin, they occurred predominantly in mid to late summer. Furthermore, the spatial coverage of FDHW events across China significantly expanded. From 1980 to 2022, FDHW events in China evolved toward higher intensities and longer durations. This trend was especially notable in the Jiang-Huai River Basin, the main grain-producing region and a densely populated area of China. From the perspective of land‒atmosphere coupling, the amplifying effect of flash droughts and high temperatures increased with their intensity. When high temperatures reached the extreme level, the amplification effect on flash droughts was evident: 35.76% from the water deficit perspective and 38.82% from the soil moisture perspective. During extreme flash droughts, the amplification effect on high temperatures intensified: 41.51% from the water deficit perspective and 45.06% from the soil moisture perspective. The Southwest River Basin became a hotspot for the interaction between flash droughts and high temperatures. This study has implications for developing science-based policies to tackle risks in the water, energy and food sectors in China.

由于其对农业、水资源和公共健康的重大影响,复合型山洪热浪(FDHW)事件已引起越来越多的关注。然而,在中国对其强度和分类的研究非常有限。在本研究中,我们使用一个分类框架对 1980 年至 2022 年中国的 FDHW 事件进行了分类,旨在解决区域模式问题并进一步探索其特征。结果表明,华北地区的FDHW事件多发生在初夏至盛夏,而华南地区(不包括西南流域)的FDHW事件则主要发生在盛夏至夏末。此外,FDHW 事件在中国的空间覆盖范围明显扩大。从 1980 年到 2022 年,中国的 FDHW 事件向强度更大、持续时间更长的方向发展。这一趋势在中国粮食主产区和人口密集区江淮流域尤为明显。从陆地-大气耦合的角度来看,山洪灾害和高温的放大效应随着强度的增加而增强。当高温达到极端水平时,对闪旱的放大效应明显:从水分亏缺角度看,放大效应为 35.76%;从土壤水分角度看,放大效应为 38.82%。在极端暴旱期间,高温的放大效应加剧:从缺水角度看为 41.51%,从土壤水分角度看为 45.06%。西南河流域成为暴旱与高温相互作用的热点地区。这项研究对制定科学的政策以应对中国水、能源和粮食部门的风险具有重要意义。
{"title":"Flash drought and heatwave compound events increased in strength and length from 1980 to 2022 in China","authors":"","doi":"10.1016/j.wace.2024.100720","DOIUrl":"10.1016/j.wace.2024.100720","url":null,"abstract":"<div><p>Compound flash drought and heatwave (FDHW) events have garnered increasing amounts of attention due to their substantial impacts on agriculture, water resources, and public health. However, studies on their intensity and classification in China are limited. In this study, we classified FDHW events in China from 1980 to 2022 using a classification framework designed to address regional patterns and explore their characteristics further. The results showed that FDHW events in northern China mostly occurred in early to mid-summer, whereas in southern China, excluding the Southwest River Basin, they occurred predominantly in mid to late summer. Furthermore, the spatial coverage of FDHW events across China significantly expanded. From 1980 to 2022, FDHW events in China evolved toward higher intensities and longer durations. This trend was especially notable in the Jiang-Huai River Basin, the main grain-producing region and a densely populated area of China. From the perspective of land‒atmosphere coupling, the amplifying effect of flash droughts and high temperatures increased with their intensity. When high temperatures reached the extreme level, the amplification effect on flash droughts was evident: 35.76% from the water deficit perspective and 38.82% from the soil moisture perspective. During extreme flash droughts, the amplification effect on high temperatures intensified: 41.51% from the water deficit perspective and 45.06% from the soil moisture perspective. The Southwest River Basin became a hotspot for the interaction between flash droughts and high temperatures. This study has implications for developing science-based policies to tackle risks in the water, energy and food sectors in China.</p></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000811/pdfft?md5=e4409628be16d9fb977682d4c3e2a5c6&pid=1-s2.0-S2212094724000811-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum “Multiscale drivers of catastrophic heavy rainfall event in early August 2022 in South Korea” [Weather and Climate Extremes, 44, 2024, 1–16/10068] 更正 "2022 年 8 月初韩国灾难性暴雨事件的多尺度驱动因素"[《极端天气与气候》,44,2024,1-16/10068]
IF 8 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-13 DOI: 10.1016/j.wace.2024.100719
Chanil Park, Min-Jee Kang, Jaeyoung Hwang, Hyeong-Oh Cho, Sujin Kim, Seok-Woo Son
{"title":"Corrigendum “Multiscale drivers of catastrophic heavy rainfall event in early August 2022 in South Korea” [Weather and Climate Extremes, 44, 2024, 1–16/10068]","authors":"Chanil Park, Min-Jee Kang, Jaeyoung Hwang, Hyeong-Oh Cho, Sujin Kim, Seok-Woo Son","doi":"10.1016/j.wace.2024.100719","DOIUrl":"https://doi.org/10.1016/j.wace.2024.100719","url":null,"abstract":"","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multivariate analysis of compound hail, wind and rainfall extremes in Alberta's hail alley 阿尔伯塔冰雹巷冰雹、风和降雨复合极端事件的多元分析
IF 6.1 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-09-03 DOI: 10.1016/j.wace.2024.100718

Hailstorms are severe weather events with the potential for devastating impacts. The consequences can be significantly worsened when hail events are accompanied by strong winds, intensifying both hail momentum and damage to property sidings and windows. Additionally, rainfall extremes during hailstorms can disrupt the drainage systems, potentially leading to flash flooding. Therefore, understanding the inter-dependencies and joint behaviour of these hazards is crucial for developing effective risk mitigation strategies. In this study, we conduct a multivariate probabilistic assessment of concurrent hail, wind, and rainfall extremes over the Alberta's “hail alley” using radar and ground-based observations. The analysis comprehensively explores individual hazards, as well as bivariate and trivariate scenarios using a vine copula approach. We quantify individual, conditional, and joint return periods (JRPs) for the various scenarios. Findings indicate that in both wind-driven hail and hail-rainfall extreme hazards, the joint occurrences based on JRP, can be underestimated by 20% and 70% when assuming independence, respectively, which has substantial implications for risk assessment and management, as well as infrastructure design and maintenance. The analysis of the trivariate case suggests the potential for the concurrent occurrence of multiple hazards in the region. Furthermore, results show that Archimedean copula families outperform elliptical copulas in simulating extreme variables related to compound events associated with hailstorms. The study stresses the importance of assessing the joint behaviour of these hazard components in hailstorms, with the objective of mitigating potential impacts on vulnerable regions.

冰雹是一种可能造成毁灭性影响的恶劣天气事件。如果冰雹事件伴有强风,冰雹的威力和对房屋外墙和窗户的损坏都会加剧,后果会更加严重。此外,冰雹期间的极端降雨会破坏排水系统,可能导致山洪暴发。因此,了解这些灾害的相互依存关系和共同行为对于制定有效的风险缓解策略至关重要。在本研究中,我们利用雷达和地面观测数据,对阿尔伯塔省 "冰雹巷 "上同时出现的冰雹、风和极端降雨进行了多元概率评估。该分析采用藤状共轭方法全面探讨了单个危害以及二元和三元情景。我们对各种情况下的单个、条件和联合重现期(JRPs)进行了量化。研究结果表明,在风致冰雹和冰雹-降雨极端灾害中,基于联合回归期的联合发生率在假设独立的情况下可分别低估 20% 和 70%,这对风险评估和管理以及基础设施设计和维护具有重大影响。对三变量情况的分析表明,该地区有可能同时发生多种灾害。此外,结果表明,在模拟与冰雹相关的复合事件有关的极端变量方面,阿基米德共轭系数族优于椭圆共轭系数。这项研究强调了评估冰雹中这些灾害成分的共同行为的重要性,目的是减轻对脆弱地区的潜在影响。
{"title":"Multivariate analysis of compound hail, wind and rainfall extremes in Alberta's hail alley","authors":"","doi":"10.1016/j.wace.2024.100718","DOIUrl":"10.1016/j.wace.2024.100718","url":null,"abstract":"<div><p>Hailstorms are severe weather events with the potential for devastating impacts. The consequences can be significantly worsened when hail events are accompanied by strong winds, intensifying both hail momentum and damage to property sidings and windows. Additionally, rainfall extremes during hailstorms can disrupt the drainage systems, potentially leading to flash flooding. Therefore, understanding the inter-dependencies and joint behaviour of these hazards is crucial for developing effective risk mitigation strategies. In this study, we conduct a multivariate probabilistic assessment of concurrent hail, wind, and rainfall extremes over the Alberta's “hail alley” using radar and ground-based observations. The analysis comprehensively explores individual hazards, as well as bivariate and trivariate scenarios using a vine copula approach. We quantify individual, conditional, and joint return periods (JRPs) for the various scenarios. Findings indicate that in both wind-driven hail and hail-rainfall extreme hazards, the joint occurrences based on JRP, can be underestimated by 20% and 70% when assuming independence, respectively, which has substantial implications for risk assessment and management, as well as infrastructure design and maintenance. The analysis of the trivariate case suggests the potential for the concurrent occurrence of multiple hazards in the region. Furthermore, results show that Archimedean copula families outperform elliptical copulas in simulating extreme variables related to compound events associated with hailstorms. The study stresses the importance of assessing the joint behaviour of these hazard components in hailstorms, with the objective of mitigating potential impacts on vulnerable regions.</p></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000793/pdfft?md5=7c963bc76010c213e0a583feccef85ca&pid=1-s2.0-S2212094724000793-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Land-atmosphere coupling amplified the record-breaking heatwave at altitudes above 5000 meters on the Tibetan Plateau in July 2022 陆地-大气耦合放大了 2022 年 7 月青藏高原海拔 5000 米以上地区的破纪录热浪
IF 6.1 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-08-20 DOI: 10.1016/j.wace.2024.100717

In July 2022, regions with elevations exceeding 5 000 m on the inner Tibetan Plateau (TP) witnessed a record-breaking heatwave. But how the atmospheric circulation and soil moisture play roles in the occurrence and maintenance of the heatwave in such high elevation climate sensitive region remains unknown. Here, by using the flow analogue method, we find that negative soil moisture anomalies explain more than half of the extreme high temperature during the heatwave, while atmospheric circulation explains less than half. The high soil moisture-temperature coupling metric and the increased correlation between latent heat flux and soil moisture during heatwave revealed strong land-atmosphere feedback in the Qiangtang Plateau which has amplified the heatwave. Analyses of numerical experiments confirm that the presence of interaction between soil moisture and the atmosphere has increased the intensity of hot extreme event under the same atmospheric circulation conditions. Under the warming background, land-atmosphere coupling leads to a faster increase in extreme high temperatures compared to the global mean warming rate, and it is twice as fast as the increase in extreme high temperatures without coupling. We highlight the increased probability of extreme high temperature over the TP in the future due to soil moisture feedback and the results are hoped to inform policymakers in making decisions for climate adaptation activities.

2022 年 7 月,青藏高原内部海拔超过 5 000 米的地区出现了破纪录的热浪。但是,大气环流和土壤水分如何在这种高海拔气候敏感区域的热浪发生和维持过程中发挥作用仍是未知数。在此,我们利用流动模拟法发现,负的土壤水分异常可以解释热浪期间一半以上的极端高温,而大气环流只能解释不到一半的极端高温。热浪期间土壤水分-温度的高耦合度以及潜热通量与土壤水分之间的相关性增加,揭示了羌塘高原强烈的陆地-大气反馈,放大了热浪。数值试验分析表明,在相同大气环流条件下,土壤水分与大气之间的相互作用增加了热极端事件的强度。在气候变暖的背景下,与全球平均变暖速度相比,陆地-大气耦合导致极端高温的增加速度更快,是没有耦合的极端高温增加速度的两倍。我们强调了土壤水分反馈导致未来热带雨林极端高温发生的概率增加,希望这些结果能为政策制定者的气候适应活动决策提供参考。
{"title":"Land-atmosphere coupling amplified the record-breaking heatwave at altitudes above 5000 meters on the Tibetan Plateau in July 2022","authors":"","doi":"10.1016/j.wace.2024.100717","DOIUrl":"10.1016/j.wace.2024.100717","url":null,"abstract":"<div><p>In July 2022, regions with elevations exceeding 5 000 m on the inner Tibetan Plateau (TP) witnessed a record-breaking heatwave. But how the atmospheric circulation and soil moisture play roles in the occurrence and maintenance of the heatwave in such high elevation climate sensitive region remains unknown. Here, by using the flow analogue method, we find that negative soil moisture anomalies explain more than half of the extreme high temperature during the heatwave, while atmospheric circulation explains less than half. The high soil moisture-temperature coupling metric and the increased correlation between latent heat flux and soil moisture during heatwave revealed strong land-atmosphere feedback in the Qiangtang Plateau which has amplified the heatwave. Analyses of numerical experiments confirm that the presence of interaction between soil moisture and the atmosphere has increased the intensity of hot extreme event under the same atmospheric circulation conditions. Under the warming background, land-atmosphere coupling leads to a faster increase in extreme high temperatures compared to the global mean warming rate, and it is twice as fast as the increase in extreme high temperatures without coupling. We highlight the increased probability of extreme high temperature over the TP in the future due to soil moisture feedback and the results are hoped to inform policymakers in making decisions for climate adaptation activities.</p></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000781/pdfft?md5=e99230385068be473d2831d54a0f81b9&pid=1-s2.0-S2212094724000781-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142058452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating historical storm surge events into flood risk security in the Copenhagen region 将历史上的风暴潮事件纳入哥本哈根地区的洪水风险安全中
IF 6.1 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-08-20 DOI: 10.1016/j.wace.2024.100713

Rapid urbanisation along the coasts of the world in recent decades has increased their vulnerability to storm surges, especially in response to mean sea level rise. The unique geographical and social conditions of Copenhagen, a major European coastal city, have prompted urban expansion along Køge Bay to the south of the city. However, this new urbanisation area is confronted with the common obstacle of developing a coastal defence strategy, i.e., the lack of long-term observational data required to determine a reliable storm surge protection level. This study aims to address this issue by developing a framework that integrates historical records of extreme storm surge events into coastal defence strategies, using Copenhagen as a case study. We propose a four-step work framework, including (1) Data collection and analysis: We collected and analysed data from neighbouring cities and used modelling and reanalysis data sets. By combining these sources, we aim to reconstruct historical time series for the study site dating back to 1836. This extended information set enhances our understanding of past storm surge events. (2) Statistical modelling and forecasting: Using Bayesian statistical methods, we fitted the historical storm surge data to appropriate probability distributions. This enabled us to generate probabilistic forecasts of storm surge magnitudes, providing insight into the likelihood of future events and their potential impacts on the coastal area. (3) Sensitivity analyses: We performed sensitivity experiments using Markov chain Monte Carlo (MCMC) methods to identify the most influential parameters, such as thresholds, that affect storm surge levels. This analysis improved our understanding of the key drivers of storm surge events and their uncertainties, further informing coastal defence strategies. (4) Expert judgement and risk management: Expert judgements are implemented to establish the necessary security level to manage flood risks in the city. This helps to ensure that high-impact, low-probability events are adequately considered in risk management efforts. Following this framework, we can develop a comprehensive understanding of storm surge risks in the urbanised region south of Copenhagen and use historical data to inform coastal defence strategies. This study emphasises the importance of incorporating long-term observational data and expert insights to improve the resilience of coastal cities facing the challenges of urbanisation and climate change.

近几十年来,世界沿海地区的快速城市化增加了它们面对风暴潮的脆弱性,尤其是在平均海平面上升的情况下。哥本哈根是欧洲主要的沿海城市,其独特的地理和社会条件促使城市向南沿 Køge 海湾扩张。然而,这一新的城市化地区面临着制定海岸防御战略的共同障碍,即缺乏确定可靠的风暴潮防护等级所需的长期观测数据。本研究以哥本哈根为案例,旨在通过建立一个框架,将极端风暴潮事件的历史记录整合 到海岸防御战略中,从而解决这一问题。我们提出了一个四步工作框架,包括 (1) 数据收集和分析:我们收集和分析了邻近城市的数据,并使用了建模和再分析数据集。结合这些来源,我们旨在重建研究地点的历史时间序列,最早可追溯到 1836 年。这一扩展信息集增强了我们对过去风暴潮事件的了解。(2) 统计建模和预测:利用贝叶斯统计方法,我们将历史风暴潮数据拟合到适当的概率分布中。这使我们能够对风暴潮的强度进行概率预报,从而了解未来风暴潮发生的可能性及其对沿岸地区的潜在影响。(3) 敏感性分析:我们采用马尔可夫链蒙特卡罗(MCMC)方法进行了敏感性实验,以确定影响风暴潮水平的最有影响力的参数,如阈值。这一分析提高了我们对风暴潮事件的主要驱动因素及其不确定性的认识,从而为沿岸防御战略提供了更多的信息。(4) 专家判断和风险管理:通过专家判断,确定必要的安全级别,以管理城市的洪水风险。这有助于确保在风险管理工作中充分考虑影响大、概率低的事件。根据这一框架,我们可以全面了解哥本哈根南部城市化地区的风暴潮风险,并利用历史数据为海岸防御战略提供依据。这项研究强调了结合长期观测数据和专家见解来提高面临城市化和气候变化挑战的沿海城市抗灾能力的重要性。
{"title":"Integrating historical storm surge events into flood risk security in the Copenhagen region","authors":"","doi":"10.1016/j.wace.2024.100713","DOIUrl":"10.1016/j.wace.2024.100713","url":null,"abstract":"<div><p>Rapid urbanisation along the coasts of the world in recent decades has increased their vulnerability to storm surges, especially in response to mean sea level rise. The unique geographical and social conditions of Copenhagen, a major European coastal city, have prompted urban expansion along Køge Bay to the south of the city. However, this new urbanisation area is confronted with the common obstacle of developing a coastal defence strategy, i.e., the lack of long-term observational data required to determine a reliable storm surge protection level. This study aims to address this issue by developing a framework that integrates historical records of extreme storm surge events into coastal defence strategies, using Copenhagen as a case study. We propose a four-step work framework, including (1) Data collection and analysis: We collected and analysed data from neighbouring cities and used modelling and reanalysis data sets. By combining these sources, we aim to reconstruct historical time series for the study site dating back to 1836. This extended information set enhances our understanding of past storm surge events. (2) Statistical modelling and forecasting: Using Bayesian statistical methods, we fitted the historical storm surge data to appropriate probability distributions. This enabled us to generate probabilistic forecasts of storm surge magnitudes, providing insight into the likelihood of future events and their potential impacts on the coastal area. (3) Sensitivity analyses: We performed sensitivity experiments using Markov chain Monte Carlo (MCMC) methods to identify the most influential parameters, such as thresholds, that affect storm surge levels. This analysis improved our understanding of the key drivers of storm surge events and their uncertainties, further informing coastal defence strategies. (4) Expert judgement and risk management: Expert judgements are implemented to establish the necessary security level to manage flood risks in the city. This helps to ensure that high-impact, low-probability events are adequately considered in risk management efforts. Following this framework, we can develop a comprehensive understanding of storm surge risks in the urbanised region south of Copenhagen and use historical data to inform coastal defence strategies. This study emphasises the importance of incorporating long-term observational data and expert insights to improve the resilience of coastal cities facing the challenges of urbanisation and climate change.</p></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000744/pdfft?md5=dda33e860ca39174063827009fe95414&pid=1-s2.0-S2212094724000744-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142043748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The key role of extreme weather and climate change in the occurrence of exceptional fire seasons in south-central Chile 极端天气和气候变化在智利中南部出现异常火灾季节中的关键作用
IF 6.1 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Pub Date : 2024-08-16 DOI: 10.1016/j.wace.2024.100716

Unprecedentedly large areas were burned during the 2016/17 and 2022/23 fire seasons in south-central Chile (34-39°S). These seasonal-aggregated values were mostly accounted for human-caused wildfires within a limited period in late January 2017 and early February 2023. In this paper, we provide a comprehensive analysis of the meteorological conditions during these events, from local to hemispheric scales, and formally assess the contribution of climate change to their occurrence. To achieve this, we gathered monthly fire data from the Chilean Forestry Corporation and daily burned area estimates from satellite sources. In-situ and gridded data provided near-surface atmospheric insights, ERA5 reanalysis helped analyze broader wildfire features, high-resolution simulations were used to obtain details of the wind field, and large-ensemble simulations allowed the assessment of climate change's impact on extreme temperatures during the fires. This study found extraordinary daily burned area values (>65,000 ha) occurring under extreme surface weather conditions (temperature, humidity, and winds), fostered by strong mid-level subsidence ahead of a ridge and downslope winds converging towards a coastal low. Daytime temperatures and the water vapor deficit reached the maximum values observed across the region, well above the previous historical records. We hypothesize that these conditions were crucial in exacerbating the spread of fire, along with longer-term atmospheric processes and other non-climatic factors such as fuel availability and increasing human-driven ignitions. Our findings further reveal that climate change has increased the probability and intensity of extremely warm temperatures in south-central Chile, underscoring anthropogenic forcing as a significant driver of the extreme fire activity in the region.

在智利中南部(34-39°S)的 2016/17 和 2022/23 火灾季节,前所未有的大面积火灾被烧毁。在 2017 年 1 月底和 2023 年 2 月初的有限时间内,这些季节性综合数值主要是人为野火造成的。在本文中,我们从局部到半球尺度全面分析了这些事件发生期间的气象条件,并正式评估了气候变化对这些事件发生的影响。为此,我们收集了智利林业公司提供的每月火灾数据和卫星来源提供的每日烧毁面积估计数据。原地数据和网格数据提供了对近地表大气的深入了解,ERA5 再分析有助于分析更广泛的野火特征,高分辨率模拟用于获取风场的细节,大集合模拟可以评估气候变化对火灾期间极端温度的影响。这项研究发现,在极端的地表天气条件(温度、湿度和风)下,由于山脊前方的中层强烈下沉和向沿海低地汇聚的下坡风,每天的烧毁面积都非常大(大于 65,000 公顷)。白天的气温和水汽赤字达到了整个地区观测到的最大值,远高于以往的历史记录。我们推测,这些条件以及长期大气过程和其他非气候因素(如燃料供应和越来越多的人为点火)对加剧火势蔓延至关重要。我们的研究结果进一步表明,气候变化增加了智利中南部出现极端暖温的概率和强度,突出表明人为因素是该地区极端火灾活动的重要驱动力。
{"title":"The key role of extreme weather and climate change in the occurrence of exceptional fire seasons in south-central Chile","authors":"","doi":"10.1016/j.wace.2024.100716","DOIUrl":"10.1016/j.wace.2024.100716","url":null,"abstract":"<div><p>Unprecedentedly large areas were burned during the 2016/17 and 2022/23 fire seasons in south-central Chile (34-39°S). These seasonal-aggregated values were mostly accounted for human-caused wildfires within a limited period in late January 2017 and early February 2023. In this paper, we provide a comprehensive analysis of the meteorological conditions during these events, from local to hemispheric scales, and formally assess the contribution of climate change to their occurrence. To achieve this, we gathered monthly fire data from the Chilean Forestry Corporation and daily burned area estimates from satellite sources. In-situ and gridded data provided near-surface atmospheric insights, ERA5 reanalysis helped analyze broader wildfire features, high-resolution simulations were used to obtain details of the wind field, and large-ensemble simulations allowed the assessment of climate change's impact on extreme temperatures during the fires. This study found extraordinary daily burned area values (&gt;65,000 ha) occurring under extreme surface weather conditions (temperature, humidity, and winds), fostered by strong mid-level subsidence ahead of a ridge and downslope winds converging towards a coastal low. Daytime temperatures and the water vapor deficit reached the maximum values observed across the region, well above the previous historical records. We hypothesize that these conditions were crucial in exacerbating the spread of fire, along with longer-term atmospheric processes and other non-climatic factors such as fuel availability and increasing human-driven ignitions. Our findings further reveal that climate change has increased the probability and intensity of extremely warm temperatures in south-central Chile, underscoring anthropogenic forcing as a significant driver of the extreme fire activity in the region.</p></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221209472400077X/pdfft?md5=86347660f42a6cf4a9fcfd2af91d3006&pid=1-s2.0-S221209472400077X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142043587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Weather and Climate Extremes
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1