Effects of transitioning from conventional to organic farming on soil organic carbon and microbial community: a comparison of long-term non-inversion minimum tillage and conventional tillage
Rok Mihelič, Sara Pintarič, Klemen Eler, Marjetka Suhadolc
{"title":"Effects of transitioning from conventional to organic farming on soil organic carbon and microbial community: a comparison of long-term non-inversion minimum tillage and conventional tillage","authors":"Rok Mihelič, Sara Pintarič, Klemen Eler, Marjetka Suhadolc","doi":"10.1007/s00374-024-01796-y","DOIUrl":null,"url":null,"abstract":"<p>The combination of conservation tillage (non-inversion and no-till) with organic farming is rare due to weed problems. However, both practices have the potential to improve soil quality and increase soil organic C (SOC). This study investigated the changes in SOC, microbial biomass, and microbial composition during the transition from conventional to organic farming (from 2014 to 2020) in a long-term tillage trial established in 1999. Non-inversion minimum tillage to a depth of 10 cm (MT) resulted in SOC stratification, whilst conventional soil tillage with 25-cm-deep mouldboard ploughing (CT) maintained an even SOC distribution in the plough layer. After 12 years of contrasting tillage in 2011, the uppermost soil layer under MT had a 10% higher SOC content (1.6% w/w) than CT (1.45% w/w). This difference became even more pronounced after introducing organic farming in 2014. By the fall of 2020, the SOC content under MT increased to 1.94%, whilst it decreased slightly to 1.36% under CT, resulting in a 43% difference between the two systems. Conversion to organic farming increased microbial biomass under both tillage systems, whilst SOC remained unchanged in CT. Abundances of total bacterial and Crenarchaeal 16S rRNA and fungal ITS genes indicated shifts in the microbial community in response to tillage and depth. Fungal communities under MT were more responsive to organic farming than bacterial communities. The improved soil quality observed under MT supports its adoption in both organic and conventional systems, but potentially large yield losses due to increased weed cover discourage farmers from combining MT and organic farming.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01796-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The combination of conservation tillage (non-inversion and no-till) with organic farming is rare due to weed problems. However, both practices have the potential to improve soil quality and increase soil organic C (SOC). This study investigated the changes in SOC, microbial biomass, and microbial composition during the transition from conventional to organic farming (from 2014 to 2020) in a long-term tillage trial established in 1999. Non-inversion minimum tillage to a depth of 10 cm (MT) resulted in SOC stratification, whilst conventional soil tillage with 25-cm-deep mouldboard ploughing (CT) maintained an even SOC distribution in the plough layer. After 12 years of contrasting tillage in 2011, the uppermost soil layer under MT had a 10% higher SOC content (1.6% w/w) than CT (1.45% w/w). This difference became even more pronounced after introducing organic farming in 2014. By the fall of 2020, the SOC content under MT increased to 1.94%, whilst it decreased slightly to 1.36% under CT, resulting in a 43% difference between the two systems. Conversion to organic farming increased microbial biomass under both tillage systems, whilst SOC remained unchanged in CT. Abundances of total bacterial and Crenarchaeal 16S rRNA and fungal ITS genes indicated shifts in the microbial community in response to tillage and depth. Fungal communities under MT were more responsive to organic farming than bacterial communities. The improved soil quality observed under MT supports its adoption in both organic and conventional systems, but potentially large yield losses due to increased weed cover discourage farmers from combining MT and organic farming.
期刊介绍:
Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.