首页 > 最新文献

Biology and Fertility of Soils最新文献

英文 中文
Pyraclostrobin and polyethylene nanoplastics jointly interfere with the antibiotic resistome in earthworm gut
IF 6.5 1区 农林科学 Q1 SOIL SCIENCE Pub Date : 2025-04-21 DOI: 10.1007/s00374-025-01916-2
Jing Yang, Conglai Zheng, Enyu Zhang, Guy Smagghe, Shunhua Gui, Xiaomao Wu, Xiangsheng Chen

Antibiotic resistance has emerged as a global threat to public health. However, the current information is insufficient to understand how other pollutants, such as fungicides and nanoplastics, affect the spread of antibiotic resistance genes (ARGs) among bacteria in the soil. Here, our findings revealed that polyethylene nanoplastics (PENPs) prolonged the persistence of pyraclostrobin (PYR) in the soil by 13 days, increased PYR bioaccumulation in earthworm (Eisenia fetida) by 8.4%, and reduced its weights by 26.8%. PYR alone or combined with PENPs significantly increased the microbiome diversities of earthworm guts, while PENPs alone decreased those but increased the relative abundances of Proteobacteria and Firmicute. PYR and/or PENPs enhanced the diversity and abundance of ARGs in earthworm guts, the range of ARG hosts, and the complexity of ARGs and antibiotic-resistant bacteria coexistence network. The abundance of plasmid-origin ARG-harboring contigs in PYR, PENP, and PYR + PENP treatments was 1.5-, 3.8-, and 2.4-fold higher than that in the control, respectively. Overall, PYR and/or PENPs specifically disturbed the antibiotic resistome in earthworm guts by altering the bacterial community composition and richness, increasing the abundance of mobile genetic elements (MGEs) and ARGs, and modifying the co-occurrence pattern of ARGs-MGEs, particularly plasmids.

{"title":"Pyraclostrobin and polyethylene nanoplastics jointly interfere with the antibiotic resistome in earthworm gut","authors":"Jing Yang, Conglai Zheng, Enyu Zhang, Guy Smagghe, Shunhua Gui, Xiaomao Wu, Xiangsheng Chen","doi":"10.1007/s00374-025-01916-2","DOIUrl":"https://doi.org/10.1007/s00374-025-01916-2","url":null,"abstract":"<p>Antibiotic resistance has emerged as a global threat to public health. However, the current information is insufficient to understand how other pollutants, such as fungicides and nanoplastics, affect the spread of antibiotic resistance genes (ARGs) among bacteria in the soil. Here, our findings revealed that polyethylene nanoplastics (PENPs) prolonged the persistence of pyraclostrobin (PYR) in the soil by 13 days, increased PYR bioaccumulation in earthworm (<i>Eisenia fetida</i>) by 8.4%, and reduced its weights by 26.8%. PYR alone or combined with PENPs significantly increased the microbiome diversities of earthworm guts, while PENPs alone decreased those but increased the relative abundances of Proteobacteria and Firmicute. PYR and/or PENPs enhanced the diversity and abundance of ARGs in earthworm guts, the range of ARG hosts, and the complexity of ARGs and antibiotic-resistant bacteria coexistence network. The abundance of plasmid-origin ARG-harboring contigs in PYR, PENP, and PYR + PENP treatments was 1.5-, 3.8-, and 2.4-fold higher than that in the control, respectively. Overall, PYR and/or PENPs specifically disturbed the antibiotic resistome in earthworm guts by altering the bacterial community composition and richness, increasing the abundance of mobile genetic elements (MGEs) and ARGs, and modifying the co-occurrence pattern of ARGs-MGEs, particularly plasmids.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"4 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does an enhanced microbial diversity promote the resistance of soil multifunctionality against drought events in amended soils?
IF 6.5 1区 农林科学 Q1 SOIL SCIENCE Pub Date : 2025-04-10 DOI: 10.1007/s00374-025-01914-4
L. Morales-Salmerón, E. Fernández-Boy, B. Herrador, R. León, M. T. Domínguez

A large fraction of the Mediterranean soils is threatened by losses of organic matter and biodiversity, which could compromise the provision of soil ecosystem services and the stability of ecosystems in the face of climate change. In this work we explore several hypotheses related to the role of C inputs and microbial diversity on soil multifunctionality and its resistance to drought in degraded Mediterranean soils. We designed a factorial experiment to test the effect of the addition of an organic amendment and of microbial diversity (using four inoculants with different abundance and diversity of soil microbiota), on the resistance of soil functionality against drought in pot mesocosms. Pots were sown with a forage mixture (Lolium rigidum and Medicago polymorpha), and plant productivity, soil chemical properties, and microbial activity and diversity were measured before and after a simulated drought event. The amendment favored soil moisture, enhancing the stability of the productivity of M. polymorpha. In contrast, the manipulation of inoculation load had a limited effect on the resistance of microbiological activity. Indeed, microbial functioning was highly resistant to reduced water inputs, probably related to the prevalence of Gram positive bacteria. Besides, the effect of microbial diversity on soil multifunctionality was limited. Structural equation modelling confirmed that the enhancement of multifunctionality after soil amendment was attributed to the direct effect of organic C on soil moisture and chemical fertility. In these degraded soils, physico-chemical limitations are the major drivers of soil multifunctionality rather than bacterial or fungal diversity.

地中海的大部分土壤都受到有机质和生物多样性损失的威胁,这可能会影响土壤生态系统服务的提供以及生态系统在气候变化面前的稳定性。在这项工作中,我们探讨了与碳输入和微生物多样性对地中海退化土壤的多功能性及其抗旱性的作用有关的几个假设。我们设计了一个因子实验,以检验添加有机添加剂和微生物多样性(使用四种具有不同丰度和多样性的土壤微生物群的接种剂)对盆栽中置模型中土壤功能抗旱性的影响。在盆中播种了牧草混合物(硬质小麦和多稃美智子),并在模拟干旱事件发生前后测量了植物生产力、土壤化学性质、微生物活性和多样性。改良剂有利于增加土壤湿度,提高多肉植物生产力的稳定性。相比之下,接种量的控制对微生物活动的抵抗力影响有限。事实上,微生物功能对减少水分输入的抵抗力很强,这可能与革兰氏阳性菌的普遍存在有关。此外,微生物多样性对土壤多功能性的影响也很有限。结构方程模型证实,土壤改良后多功能性的增强归因于有机碳对土壤水分和化学肥力的直接影响。在这些退化土壤中,物理化学限制是土壤多功能性的主要驱动因素,而不是细菌或真菌多样性。
{"title":"Does an enhanced microbial diversity promote the resistance of soil multifunctionality against drought events in amended soils?","authors":"L. Morales-Salmerón, E. Fernández-Boy, B. Herrador, R. León, M. T. Domínguez","doi":"10.1007/s00374-025-01914-4","DOIUrl":"https://doi.org/10.1007/s00374-025-01914-4","url":null,"abstract":"<p>A large fraction of the Mediterranean soils is threatened by losses of organic matter and biodiversity, which could compromise the provision of soil ecosystem services and the stability of ecosystems in the face of climate change. In this work we explore several hypotheses related to the role of C inputs and microbial diversity on soil multifunctionality and its resistance to drought in degraded Mediterranean soils. We designed a factorial experiment to test the effect of the addition of an organic amendment and of microbial diversity (using four inoculants with different abundance and diversity of soil microbiota), on the resistance of soil functionality against drought in pot mesocosms. Pots were sown with a forage mixture (<i>Lolium rigidum</i> and <i>Medicago polymorpha</i>), and plant productivity, soil chemical properties, and microbial activity and diversity were measured before and after a simulated drought event. The amendment favored soil moisture, enhancing the stability of the productivity of <i>M. polymorpha</i>. In contrast, the manipulation of inoculation load had a limited effect on the resistance of microbiological activity. Indeed, microbial functioning was highly resistant to reduced water inputs, probably related to the prevalence of Gram positive bacteria. Besides, the effect of microbial diversity on soil multifunctionality was limited. Structural equation modelling confirmed that the enhancement of multifunctionality after soil amendment was attributed to the direct effect of organic C on soil moisture and chemical fertility. In these degraded soils, physico-chemical limitations are the major drivers of soil multifunctionality rather than bacterial or fungal diversity.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"183 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143814262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphorus fertilizer enhances the tolerance of rhizosphere microbial community to low-light stress in Tartary buckwheat
IF 6.5 1区 农林科学 Q1 SOIL SCIENCE Pub Date : 2025-04-08 DOI: 10.1007/s00374-025-01915-3
Yuchuan Zhang, Zhijia Cui, Yujiao Li, Meng Wang, Feifei Zhang, Yu Feng, Xi Zhang, Qinghua Yang, Lixin Tian, Baili Feng

Low-light stress has become an important factor limiting crop yield and quality improvement. Appropriate phosphorus (P) addition can enhance soil microbial activity and nutrient availability, thereby alleviating the negative impacts of low-light stress. However, the role of crop rhizosphere microorganisms in the mitigation of low-light stress by P addition in agroecosystems remains unclear. In this study, three light conditions (normal light, S0; moderate low-light stress, S1; severe low-light stress, S2) and three P addition levels (0 kg ha− 1, P0; 35 kg ha− 1, P1; 70 kg ha− 1, P2) were applied to analyze the combined effects on the rhizosphere microbial diversities, compositions, co-occurrence patterns, and assembly mechanisms during critical growth stages (flowering, filling, and maturity stages). The results showed that both low-light stress and P appreciably affected rhizosphere microbial community composition, with P promoting the proliferation of rhizosphere beneficial microbes under low-light stress. Low-light stress reduced rhizosphere microbial α-diversity, and S2 simplified microbial networks. In contrast, P1 increased bacterial network complexity, connectivity, and stability. Indicator taxa analysis revealed that P1 increased the abundance of shared and specific species in rhizosphere microbial networks. Under S1, P1 enhanced keystone taxa abundance. Community assembly analysis indicated that bacterial communities were governed by deterministic processes, whereas low-light stress reduced fungal stochasticity, which was increased by P addition. These findings highlight that P addition under low-light stress can enhance the tolerance of Tartary buckwheat rhizosphere microbial community by modulating rhizosphere microbial diversity, composition, and network stability, providing insights into alleviating low-light stress.

弱光胁迫已成为限制作物产量和质量提高的一个重要因素。适当添加磷(P)可以提高土壤微生物活性和养分供应,从而减轻弱光胁迫的负面影响。然而,在农业生态系统中,作物根瘤微生物在通过添加磷来缓解弱光胁迫方面的作用仍不清楚。本研究采用三种光照条件(正常光照,S0;中度弱光胁迫,S1;严重弱光胁迫,S2)和三种磷添加水平(0 kg ha- 1,P0;35 kg ha- 1,P1;70 kg ha- 1,P2),分析了在关键生长阶段(开花期、灌浆期和成熟期)对根瘤微生物多样性、组成、共生模式和组装机制的综合影响。结果表明,低光照胁迫和钾对根圈微生物群落组成都有显著影响,其中钾促进了低光照胁迫下根圈有益微生物的增殖。弱光胁迫降低了根圈微生物的α-多样性,S2简化了微生物网络。相比之下,P1 增加了细菌网络的复杂性、连通性和稳定性。指标类群分析表明,P1 增加了根圈微生物网络中共享物种和特定物种的丰度。在 S1 条件下,P1 提高了关键分类群的丰度。群落组装分析表明,细菌群落受确定性过程的支配,而低光照胁迫降低了真菌的随机性,添加 P1 增加了真菌的随机性。这些研究结果表明,在弱光胁迫下添加磷可以通过调节根圈微生物的多样性、组成和网络稳定性来提高鞑靼荞麦根圈微生物群落的耐受性,为缓解弱光胁迫提供了启示。
{"title":"Phosphorus fertilizer enhances the tolerance of rhizosphere microbial community to low-light stress in Tartary buckwheat","authors":"Yuchuan Zhang, Zhijia Cui, Yujiao Li, Meng Wang, Feifei Zhang, Yu Feng, Xi Zhang, Qinghua Yang, Lixin Tian, Baili Feng","doi":"10.1007/s00374-025-01915-3","DOIUrl":"https://doi.org/10.1007/s00374-025-01915-3","url":null,"abstract":"<p>Low-light stress has become an important factor limiting crop yield and quality improvement. Appropriate phosphorus (P) addition can enhance soil microbial activity and nutrient availability, thereby alleviating the negative impacts of low-light stress. However, the role of crop rhizosphere microorganisms in the mitigation of low-light stress by P addition in agroecosystems remains unclear. In this study, three light conditions (normal light, S0; moderate low-light stress, S1; severe low-light stress, S2) and three P addition levels (0 kg ha<sup>− 1</sup>, P0; 35 kg ha<sup>− 1</sup>, P1; 70 kg ha<sup>− 1</sup>, P2) were applied to analyze the combined effects on the rhizosphere microbial diversities, compositions, co-occurrence patterns, and assembly mechanisms during critical growth stages (flowering, filling, and maturity stages). The results showed that both low-light stress and P appreciably affected rhizosphere microbial community composition, with P promoting the proliferation of rhizosphere beneficial microbes under low-light stress. Low-light stress reduced rhizosphere microbial α-diversity, and S2 simplified microbial networks. In contrast, P1 increased bacterial network complexity, connectivity, and stability. Indicator taxa analysis revealed that P1 increased the abundance of shared and specific species in rhizosphere microbial networks. Under S1, P1 enhanced keystone taxa abundance. Community assembly analysis indicated that bacterial communities were governed by deterministic processes, whereas low-light stress reduced fungal stochasticity, which was increased by P addition. These findings highlight that P addition under low-light stress can enhance the tolerance of Tartary buckwheat rhizosphere microbial community by modulating rhizosphere microbial diversity, composition, and network stability, providing insights into alleviating low-light stress.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"24 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143797982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exudate pulses throughout the entire growth period trigger the increase in maize phosphorus use efficiency by modifying soil keystone microbial taxa
IF 6.5 1区 农林科学 Q1 SOIL SCIENCE Pub Date : 2025-04-04 DOI: 10.1007/s00374-025-01912-6
Guiwei Wang, Yuechao Yang, Yuanyuan Yao, Xiaoqi Wang

Exudates are the medium through which plants adapt to complex soil environments, however, the mechanisms of how different types of root exudates increase maize yield and phosphorus (P) use efficiency (PUE) throughout the entire growth period remains unknown. In this study, we designed an experiment to examine the effects of continuous addition of exudate substances on maize growth and P uptake over the entire growth period. The addition of succinic acid, luteolin, and inositol significantly increased maize biomass, particularly root biomass. Specifically, the treatment with added succinic acid increased maize yield by 11.6% and PUE by 8%. Additionally, we found that different exudate substances significantly altered the soil bacterial and fungal communities, thereby increasing soil P bioavailability. The microbial co-occurrence networks revealed that Actinobacteriota and Proteobacteria keystone ASVs, enriched by the addition of succinic acid, luteolin, and inositol, were significantly associated with maize P uptake. Furthermore, at the V12 stage (Twelve leaves unfolded), the addition of exudate substances significantly increased alkaline phosphatase activity, and at the R6 stage (Maturity), soil available P content was significantly elevated, enhancing soil P bioavailability. These findings provide evidence for future exploration of the interaction mechanisms between plants and soil microbes and optimizing nutrient management strategies in farmland.

{"title":"Exudate pulses throughout the entire growth period trigger the increase in maize phosphorus use efficiency by modifying soil keystone microbial taxa","authors":"Guiwei Wang, Yuechao Yang, Yuanyuan Yao, Xiaoqi Wang","doi":"10.1007/s00374-025-01912-6","DOIUrl":"https://doi.org/10.1007/s00374-025-01912-6","url":null,"abstract":"<p>Exudates are the medium through which plants adapt to complex soil environments, however, the mechanisms of how different types of root exudates increase maize yield and phosphorus (P) use efficiency (PUE) throughout the entire growth period remains unknown. In this study, we designed an experiment to examine the effects of continuous addition of exudate substances on maize growth and P uptake over the entire growth period. The addition of succinic acid, luteolin, and inositol significantly increased maize biomass, particularly root biomass. Specifically, the treatment with added succinic acid increased maize yield by 11.6% and PUE by 8%. Additionally, we found that different exudate substances significantly altered the soil bacterial and fungal communities, thereby increasing soil P bioavailability. The microbial co-occurrence networks revealed that Actinobacteriota and Proteobacteria keystone ASVs, enriched by the addition of succinic acid, luteolin, and inositol, were significantly associated with maize P uptake. Furthermore, at the V12 stage (Twelve leaves unfolded), the addition of exudate substances significantly increased alkaline phosphatase activity, and at the R6 stage (Maturity), soil available P content was significantly elevated, enhancing soil P bioavailability. These findings provide evidence for future exploration of the interaction mechanisms between plants and soil microbes and optimizing nutrient management strategies in farmland.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"183 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143775694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil bacterial and fungal communities beneath different forest types differentially and promptly respond to non-catastrophic typhoon disturbance
IF 6.5 1区 农林科学 Q1 SOIL SCIENCE Pub Date : 2025-03-31 DOI: 10.1007/s00374-025-01913-5
Zhihui Wang, Rui Zhang, Rui Cao, Lifeng Wang, Zhuang Wang, Qin Wang, Yuchen Lu, Yong Zhang, Wanqin Yang

The immediate responses of soil microbial communities to non-catastrophic typhoon disturbances remain largely unclear, despite soil microorganisms are key contributors to ecosystem functioning and sensitive indicators to forest disturbances. To address this gap, we simultaneously investigated soil microbial communities beneath bamboo forest (BF), Chinese fir forest (CF), secondary broadleaf forest (SF) and mixed forest (MF) in the subtropical mountain area of southeastern China before and after typhoon disturbances. Typhoon disturbances significantly altered the composition of soil microbial communities, decreasing bacterial diversity by 12.3% and network robustness by 22.6% in the topsoil, while increasing fungal diversity by 75.0% and network robustness by 33.2% in the litter layer. Notably, these indices returned to the per-typhoon levels post-disturbance. Meanwhile, typhoon disturbances increased the abundance of functional guild on bacterial cellular processes, fungal dung saprotrophs and plant saprotrophs in the topsoil. Moreover, the immediate responses of microbial community composition and diversity to typhoon disturbances were more pronounced in the CF and SF, and bacterial communities were more responsive in the topsoil, while fungal communities were more responsive in the litter layer. Additionally, soil temperature was the primary driver of microbial communities in the topsoil, while litter cellulose and calcium concentrations were key factors in the litter layer. Besides, carbon and nutrient concentrations were also significantly correlated with the composition of taxa and functional guilds of soil microbial communities. In summary, the immediate responses of microbial communities to typhoon disturbances vary considerably depending on forest types and soil horizon, with rapid recovery following typhoon events.

{"title":"Soil bacterial and fungal communities beneath different forest types differentially and promptly respond to non-catastrophic typhoon disturbance","authors":"Zhihui Wang, Rui Zhang, Rui Cao, Lifeng Wang, Zhuang Wang, Qin Wang, Yuchen Lu, Yong Zhang, Wanqin Yang","doi":"10.1007/s00374-025-01913-5","DOIUrl":"https://doi.org/10.1007/s00374-025-01913-5","url":null,"abstract":"<p>The immediate responses of soil microbial communities to non-catastrophic typhoon disturbances remain largely unclear, despite soil microorganisms are key contributors to ecosystem functioning and sensitive indicators to forest disturbances. To address this gap, we simultaneously investigated soil microbial communities beneath bamboo forest (BF), Chinese fir forest (CF), secondary broadleaf forest (SF) and mixed forest (MF) in the subtropical mountain area of southeastern China before and after typhoon disturbances. Typhoon disturbances significantly altered the composition of soil microbial communities, decreasing bacterial diversity by 12.3% and network robustness by 22.6% in the topsoil, while increasing fungal diversity by 75.0% and network robustness by 33.2% in the litter layer. Notably, these indices returned to the per-typhoon levels post-disturbance. Meanwhile, typhoon disturbances increased the abundance of functional guild on bacterial cellular processes, fungal dung saprotrophs and plant saprotrophs in the topsoil. Moreover, the immediate responses of microbial community composition and diversity to typhoon disturbances were more pronounced in the CF and SF, and bacterial communities were more responsive in the topsoil, while fungal communities were more responsive in the litter layer. Additionally, soil temperature was the primary driver of microbial communities in the topsoil, while litter cellulose and calcium concentrations were key factors in the litter layer. Besides, carbon and nutrient concentrations were also significantly correlated with the composition of taxa and functional guilds of soil microbial communities. In summary, the immediate responses of microbial communities to typhoon disturbances vary considerably depending on forest types and soil horizon, with rapid recovery following typhoon events.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"72 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143737203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of methods for assessing fungi-to-bacteria ratio of soil
IF 6.5 1区 农林科学 Q1 SOIL SCIENCE Pub Date : 2025-03-27 DOI: 10.1007/s00374-025-01911-7
Miikka B. Laine, Sami J. Taipale, Marja Tiirola

Measuring bacterial and fungal biomass may offer insights into agroecosystem health. Nevertheless, few studies have directly compared the ability of different methods to assess the abundance of these two microbial groups and their ratio (F/B ratio). This study compared the ability, precision, and repeatability of three commonly used laboratory methods - phospholipid fatty acid (PLFA) analysis, quantitative PCR (qPCR), and droplet-digital PCR (ddPCR) - alongside a commercially available microbial carbon testing tool (microBIOMETER®), to assess the F/B ratio and microbial abundance in agroecosystem soils. We also reviewed recent literature on common measurement and reporting practices. PLFA and ddPCR provided the most reliable outcomes, with PLFA being the most precise, repeatable, and widely used (81% of reviewed studies). However, significant variability in analytical procedures exists between laboratories, and key details, such as storage conditions, are often underreported. MicroBIOMETER® can offer a low-cost option for assessing total microbial biomass, but did not match PLFA results in determining the F/B ratio. ddPCR offered better precision than qPCR but had a narrower dynamic range. Therefore, optimal approach is to use the two methods in parallel. In conclusion, we recommend future studies adopt PLFA analysis as the primary method for assessing microbial abundance and F/B ratio of soils, as PCR-based measurements are influenced by several unavoidable biases. Furthermore, we suggest improvements to the PLFA method to ensure more reliable comparisons across laboratories. Altogether, our study gives guidelines for improving the monitoring of F/B ratio and microbial abundance in agroecosystems.

{"title":"Comparison of methods for assessing fungi-to-bacteria ratio of soil","authors":"Miikka B. Laine, Sami J. Taipale, Marja Tiirola","doi":"10.1007/s00374-025-01911-7","DOIUrl":"https://doi.org/10.1007/s00374-025-01911-7","url":null,"abstract":"<p>Measuring bacterial and fungal biomass may offer insights into agroecosystem health. Nevertheless, few studies have directly compared the ability of different methods to assess the abundance of these two microbial groups and their ratio (F/B ratio). This study compared the ability, precision, and repeatability of three commonly used laboratory methods - phospholipid fatty acid (PLFA) analysis, quantitative PCR (qPCR), and droplet-digital PCR (ddPCR) - alongside a commercially available microbial carbon testing tool (microBIOMETER<sup>®</sup>), to assess the F/B ratio and microbial abundance in agroecosystem soils. We also reviewed recent literature on common measurement and reporting practices. PLFA and ddPCR provided the most reliable outcomes, with PLFA being the most precise, repeatable, and widely used (81% of reviewed studies). However, significant variability in analytical procedures exists between laboratories, and key details, such as storage conditions, are often underreported. MicroBIOMETER<sup>®</sup> can offer a low-cost option for assessing total microbial biomass, but did not match PLFA results in determining the F/B ratio. ddPCR offered better precision than qPCR but had a narrower dynamic range. Therefore, optimal approach is to use the two methods in parallel. In conclusion, we recommend future studies adopt PLFA analysis as the primary method for assessing microbial abundance and F/B ratio of soils, as PCR-based measurements are influenced by several unavoidable biases. Furthermore, we suggest improvements to the PLFA method to ensure more reliable comparisons across laboratories. Altogether, our study gives guidelines for improving the monitoring of F/B ratio and microbial abundance in agroecosystems.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"18 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143712742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inoculation with in vitro promising plant growth-promoting bacteria isolated from nitrogen-limited boreal forest did not translate to in vivo growth promotion of agricultural plants
IF 6.5 1区 农林科学 Q1 SOIL SCIENCE Pub Date : 2025-03-25 DOI: 10.1007/s00374-025-01910-8
Tinkara Bizjak-Johansson, Anne Braunroth, Regina Gratz, Annika Nordin

Many yet undiscovered plant growth-promoting bacteria are proposed to be harboured in the nitrogen-limited boreal forest. These bacteria are suggested to increase plant growth not only due to their ability to fix nitrogen but also through other growth-promoting properties. Therefore, this study looked at the plant growth promotion potential of endophytic bacteria isolated from boreal forest conifer Scots pine (Pinus sylvestris) needles. Seven assays were used to measure the potential plant growth-promoting abilities of two newly isolated bacteria in this study and seven additionally selected bacteria isolated in our previous study. The three best-performing bacteria were used, either individually or in a consortium, to assess growth promotion on four common crop species. The greenhouse study included the presence of native soil and seed microbiota and used naturally nutrient-abundant soil. The results showed that while all bacteria were capable of multiple plant growth-promoting properties in the in vitro assays, they did not promote plant growth in the in vivo experiment as inoculated plants had similar or decreased chlorophyll content, root and shoot length and dry biomass compared to control plants. Our results show that bacterial plant growth-promoting potential does not always translate into successful plant growth increase in in vivo conditions and highlight the need for a better understanding of plant-bacteria interaction for the future establishment of successful bacterial bioinoculants.

{"title":"Inoculation with in vitro promising plant growth-promoting bacteria isolated from nitrogen-limited boreal forest did not translate to in vivo growth promotion of agricultural plants","authors":"Tinkara Bizjak-Johansson, Anne Braunroth, Regina Gratz, Annika Nordin","doi":"10.1007/s00374-025-01910-8","DOIUrl":"https://doi.org/10.1007/s00374-025-01910-8","url":null,"abstract":"<p>Many yet undiscovered plant growth-promoting bacteria are proposed to be harboured in the nitrogen-limited boreal forest. These bacteria are suggested to increase plant growth not only due to their ability to fix nitrogen but also through other growth-promoting properties. Therefore, this study looked at the plant growth promotion potential of endophytic bacteria isolated from boreal forest conifer Scots pine (<i>Pinus sylvestris</i>) needles. Seven assays were used to measure the potential plant growth-promoting abilities of two newly isolated bacteria in this study and seven additionally selected bacteria isolated in our previous study. The three best-performing bacteria were used, either individually or in a consortium, to assess growth promotion on four common crop species. The greenhouse study included the presence of native soil and seed microbiota and used naturally nutrient-abundant soil. The results showed that while all bacteria were capable of multiple plant growth-promoting properties in the in vitro assays, they did not promote plant growth in the in vivo experiment as inoculated plants had similar or decreased chlorophyll content, root and shoot length and dry biomass compared to control plants. Our results show that bacterial plant growth-promoting potential does not always translate into successful plant growth increase in in vivo conditions and highlight the need for a better understanding of plant-bacteria interaction for the future establishment of successful bacterial bioinoculants.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"41 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143695671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitrous oxide fluxes, their sources, and soil microbial communities depend more on carbon availability than long- and short-term phosphorus addition
IF 6.5 1区 农林科学 Q1 SOIL SCIENCE Pub Date : 2025-03-24 DOI: 10.1007/s00374-025-01909-1
Pauline Sophie Rummel, Anthony Imoudu Oyeogbe, Haitao Wang, Tim Urich, Nicole Wrage-Mönnig

Denitrification is the key process leading to production and loss of nitrogen gases from soils. Its main drivers are N availability and soil water content, but interactions with other elements, such as carbon and phosphorus, can also influence N2O formation. So far, robust information on the effects of P and the historical context of P addition on N2O sources remains limited. To address this knowledge gap, we conducted a mesocosm chamber experiment using isotopic approaches to investigate N transformations and N2O sources following P fertilizer addition in soils with varying histories of P fertilization (low and high P). Differences in long-term fertilization affected C, N, and P availability as well as microbial community composition and nutrient cycling processes. Initially, microbes in both soils were C-limited with slightly higher C availability and microbial respiration in high P soils. Low P availability in low P soil did not restrict denitrification. In contrast, long-term P-unfertilized soil had higher N2O losses compared to high P soil, which were further stimulated with P addition. Glucose addition alleviated C limitation and strongly promoted microbial growth and respiration, but did not affect N2O emissions among treatments. Bacterial denitrification and nitrifier denitrification were the main N2O forming processes, while dissimilatory nitrate reduction to ammonium (DNRA) contributed to NO3 reduction, but only slightly to N2O formation.

{"title":"Nitrous oxide fluxes, their sources, and soil microbial communities depend more on carbon availability than long- and short-term phosphorus addition","authors":"Pauline Sophie Rummel, Anthony Imoudu Oyeogbe, Haitao Wang, Tim Urich, Nicole Wrage-Mönnig","doi":"10.1007/s00374-025-01909-1","DOIUrl":"https://doi.org/10.1007/s00374-025-01909-1","url":null,"abstract":"<p>Denitrification is the key process leading to production and loss of nitrogen gases from soils. Its main drivers are N availability and soil water content, but interactions with other elements, such as carbon and phosphorus, can also influence N<sub>2</sub>O formation. So far, robust information on the effects of P and the historical context of P addition on N<sub>2</sub>O sources remains limited. To address this knowledge gap, we conducted a mesocosm chamber experiment using isotopic approaches to investigate N transformations and N<sub>2</sub>O sources following P fertilizer addition in soils with varying histories of P fertilization (low and high P). Differences in long-term fertilization affected C, N, and P availability as well as microbial community composition and nutrient cycling processes. Initially, microbes in both soils were C-limited with slightly higher C availability and microbial respiration in high P soils. Low P availability in low P soil did not restrict denitrification. In contrast, long-term P-unfertilized soil had higher N<sub>2</sub>O losses compared to high P soil, which were further stimulated with P addition. Glucose addition alleviated C limitation and strongly promoted microbial growth and respiration, but did not affect N<sub>2</sub>O emissions among treatments. Bacterial denitrification and nitrifier denitrification were the main N<sub>2</sub>O forming processes, while dissimilatory nitrate reduction to ammonium (DNRA) contributed to NO<sub>3</sub><sup>−</sup> reduction, but only slightly to N<sub>2</sub>O formation.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"20 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143677901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing phosphorus availability reduces priming effect by facilitating microbial carbon use efficiency in a subtropical forest soil
IF 6.5 1区 农林科学 Q1 SOIL SCIENCE Pub Date : 2025-03-21 DOI: 10.1007/s00374-025-01906-4
Quanxin Zeng, Qiufang Zhang, Kongcan Mei, Jiguang Feng, Xiaochun Yuan, Yuanyuan Liu, Min Xu, Hao Sun, Biao Zhu, Yuehmin Chen

The mechanisms by which phosphorus (P) availability regulates the priming effect (PE) induced by the addition of leaf litter with different qualities remain unclear. Here, soil samples from a subtropical Pinus massoniana forest were added with/without P and/or high- and low-quality 13C-labeled leaf litter. The samples were then incubated in the laboratory for 75 days to assess the PE, microbial community composition, enzyme activity, and microbial carbon use efficiency (CUE). The results showed that litter addition led to a positive PE. High-quality litter inputs stimulated microbial activity but reduced microbial CUE, resulting in a higher PE intensity. By contrast, the PE exhibited a decrease with P addition. Such finding indicates that strategies for obtaining P, such as microbial decomposition of soil organic matter, may be reduced. The random forest analysis revealed that microbial CUE is the dominant factor regulating PE, accounting for 62% of the variation in PE, and it exhibited a negative effect on PE. Collectively, our findings emphasize that P availability regulates PE by decreasing microbial decomposition and increasing CUE, highlighting its essential role in carbon-climate feedbacks.

{"title":"Increasing phosphorus availability reduces priming effect by facilitating microbial carbon use efficiency in a subtropical forest soil","authors":"Quanxin Zeng, Qiufang Zhang, Kongcan Mei, Jiguang Feng, Xiaochun Yuan, Yuanyuan Liu, Min Xu, Hao Sun, Biao Zhu, Yuehmin Chen","doi":"10.1007/s00374-025-01906-4","DOIUrl":"https://doi.org/10.1007/s00374-025-01906-4","url":null,"abstract":"<p>The mechanisms by which phosphorus (P) availability regulates the priming effect (PE) induced by the addition of leaf litter with different qualities remain unclear. Here, soil samples from a subtropical <i>Pinus massoniana</i> forest were added with/without P and/or high- and low-quality <sup>13</sup>C-labeled leaf litter. The samples were then incubated in the laboratory for 75 days to assess the PE, microbial community composition, enzyme activity, and microbial carbon use efficiency (CUE). The results showed that litter addition led to a positive PE. High-quality litter inputs stimulated microbial activity but reduced microbial CUE, resulting in a higher PE intensity. By contrast, the PE exhibited a decrease with P addition. Such finding indicates that strategies for obtaining P, such as microbial decomposition of soil organic matter, may be reduced. The random forest analysis revealed that microbial CUE is the dominant factor regulating PE, accounting for 62% of the variation in PE, and it exhibited a negative effect on PE. Collectively, our findings emphasize that P availability regulates PE by decreasing microbial decomposition and increasing CUE, highlighting its essential role in carbon-climate feedbacks.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"26 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143665980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional shift in soil microbiome with decline in photosynthetic carbon input signifies rapid decrease of soil organic carbon during alpine grassland degradation
IF 6.5 1区 农林科学 Q1 SOIL SCIENCE Pub Date : 2025-03-19 DOI: 10.1007/s00374-025-01907-3
Minghua Song, Rui Pang, Yuqiang Tian, Yikang Li, Guiqiang Wang, Xingliang Xu

How photosynthetic carbon input regulates the microbial processes involved in carbon incorporation into soil organic carbon (SOC) and its stabilization during grassland degradation remains unclear. We utilized 13C to trace photosynthetic carbon incorporation into SOC and its pools, particulate (POC) and mineral-associated (MAOC) organic carbon, and carbon assimilation by soil microbes across five stages of alpine grassland degradation (S0, without grazing; S1, moderate grazing; S2–S4, light, moderate, and heavy degradation). As grassland approached S4, SOC in the top layer decreased by 53% compared with that in S3. A similar trend was observed in the middle and bottom soil layers, corresponding to a significant decrease in POC (decreased by 54, 40, and 35% in the top, middle and bottom layer, respectively) and carbon incorporation into POC (decreased by 83, 24, and 91% in the top, middle and bottom layer, respectively). A rapid decrease in MAOC was observed in S4, and carbon incorporation into MAOC decreased abruptly in the middle (10–20 cm) and bottom (20–30 cm) soil layers of S3. More than 57% of the incorporated carbon was concentrated in the top (0–10 cm) layers of S0-S4, whereas the middle and bottom layers of S3 and S4 exhibited nearly zero carbon incorporation. During degradation, fungal groups exhibited a downward trend in photosynthetic carbon assimilation, which was associated with their decreasing contribution to carbon incorporation into SOC. However, a relatively high proportion of bacteria participated in carbon assimilation at all soil depths at each stage, suggesting that more bacteria became active in decomposing the original SOC with decreasing carbon input. Our study successfully links aboveground and belowground processes which are crucial to comprehensively understand ecosystem responses to climate change and human activities.

{"title":"Functional shift in soil microbiome with decline in photosynthetic carbon input signifies rapid decrease of soil organic carbon during alpine grassland degradation","authors":"Minghua Song, Rui Pang, Yuqiang Tian, Yikang Li, Guiqiang Wang, Xingliang Xu","doi":"10.1007/s00374-025-01907-3","DOIUrl":"https://doi.org/10.1007/s00374-025-01907-3","url":null,"abstract":"<p>How photosynthetic carbon input regulates the microbial processes involved in carbon incorporation into soil organic carbon (SOC) and its stabilization during grassland degradation remains unclear. We utilized <sup>13</sup>C to trace photosynthetic carbon incorporation into SOC and its pools, particulate (POC) and mineral-associated (MAOC) organic carbon, and carbon assimilation by soil microbes across five stages of alpine grassland degradation (S0, without grazing; S1, moderate grazing; S2–S4, light, moderate, and heavy degradation). As grassland approached S4, SOC in the top layer decreased by 53% compared with that in S3. A similar trend was observed in the middle and bottom soil layers, corresponding to a significant decrease in POC (decreased by 54, 40, and 35% in the top, middle and bottom layer, respectively) and carbon incorporation into POC (decreased by 83, 24, and 91% in the top, middle and bottom layer, respectively). A rapid decrease in MAOC was observed in S4, and carbon incorporation into MAOC decreased abruptly in the middle (10–20 cm) and bottom (20–30 cm) soil layers of S3. More than 57% of the incorporated carbon was concentrated in the top (0–10 cm) layers of S0-S4, whereas the middle and bottom layers of S3 and S4 exhibited nearly zero carbon incorporation. During degradation, fungal groups exhibited a downward trend in photosynthetic carbon assimilation, which was associated with their decreasing contribution to carbon incorporation into SOC. However, a relatively high proportion of bacteria participated in carbon assimilation at all soil depths at each stage, suggesting that more bacteria became active in decomposing the original SOC with decreasing carbon input. Our study successfully links aboveground and belowground processes which are crucial to comprehensively understand ecosystem responses to climate change and human activities.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"22 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143653911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biology and Fertility of Soils
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1