{"title":"Green chemistry route to chitosan hydrogels and investigation of the materials as efficient dye adsorbents","authors":"Dennis Gitau Njuguna, Holger Schönherr","doi":"10.1515/pac-2023-1005","DOIUrl":null,"url":null,"abstract":"Biopolymer-based materials for the adsorption of toxic dyes represent an interesting class of materials for environmental applications. Here we report on chitosan as the starting material for synthesizing dye adsorbents. In particular, the synthesis, characterization, and cationic dye adsorption properties of chitosan hydrogel adsorbents are reported. Polyanionic itaconated chitosan derivatives were synthesized in solvent-less conditions for the first time. Itaconated chitosan was cross-linked using thiol-ene chemistry to obtain hydrogels. The influence of the incorporated carboxylate groups and the cross-linker fraction on the adsorption of Methylene Blue (MB) was investigated. In addition, the impact of pH, adsorbent dose, initial concentration, and ionic strength were investigated to determine the optimum conditions for MB uptake, and the dye uptake kinetics, adsorption isotherms, selectivity, and reusability of the adsorbents were unveiled. A maximum adsorption capacity of 556 mg/g could be achieved, outperforming commercial activated charcoal and ion exchange resins. Furthermore the chitosan hydrogel adsorbents were shown to capture >90 % of cationic MB from a binary equimolar mixture with the anionic dye Methyl Orange. Since the adsorbents can be regenerated and re-used afterwards at least 20 times, retaining a high dye adsorption fraction of >95 %, these materials are promising candidates for environmental applications.","PeriodicalId":20911,"journal":{"name":"Pure and Applied Chemistry","volume":"33 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/pac-2023-1005","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biopolymer-based materials for the adsorption of toxic dyes represent an interesting class of materials for environmental applications. Here we report on chitosan as the starting material for synthesizing dye adsorbents. In particular, the synthesis, characterization, and cationic dye adsorption properties of chitosan hydrogel adsorbents are reported. Polyanionic itaconated chitosan derivatives were synthesized in solvent-less conditions for the first time. Itaconated chitosan was cross-linked using thiol-ene chemistry to obtain hydrogels. The influence of the incorporated carboxylate groups and the cross-linker fraction on the adsorption of Methylene Blue (MB) was investigated. In addition, the impact of pH, adsorbent dose, initial concentration, and ionic strength were investigated to determine the optimum conditions for MB uptake, and the dye uptake kinetics, adsorption isotherms, selectivity, and reusability of the adsorbents were unveiled. A maximum adsorption capacity of 556 mg/g could be achieved, outperforming commercial activated charcoal and ion exchange resins. Furthermore the chitosan hydrogel adsorbents were shown to capture >90 % of cationic MB from a binary equimolar mixture with the anionic dye Methyl Orange. Since the adsorbents can be regenerated and re-used afterwards at least 20 times, retaining a high dye adsorption fraction of >95 %, these materials are promising candidates for environmental applications.
期刊介绍:
Pure and Applied Chemistry is the official monthly Journal of IUPAC, with responsibility for publishing works arising from those international scientific events and projects that are sponsored and undertaken by the Union. The policy is to publish highly topical and credible works at the forefront of all aspects of pure and applied chemistry, and the attendant goal is to promote widespread acceptance of the Journal as an authoritative and indispensable holding in academic and institutional libraries.