Enhancing pitting corrosion inhibition of AISI 304 stainless steel using a green frankincense-modified ferric chloride solution

IF 1.3 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science-Poland Pub Date : 2024-01-30 DOI:10.2478/msp-2023-0037
Sami Masadeh, Shadi Al khateeb, Almontaser Bellah Ajlouni
{"title":"Enhancing pitting corrosion inhibition of AISI 304 stainless steel using a green frankincense-modified ferric chloride solution","authors":"Sami Masadeh, Shadi Al khateeb, Almontaser Bellah Ajlouni","doi":"10.2478/msp-2023-0037","DOIUrl":null,"url":null,"abstract":"To inhibit pitting corrosion of AISI 304 stainless steel (SS), the effect of different percentages of frankincense addition to a 0.5 M ferric chloride solution was explored in this work for the first time. The samples were investigated for pitting corrosion susceptibility via electrochemical noise (EN) tests, where the current and potential noises were recorded for 10000 seconds, and potentiodynamic polarization. The frequency domain of EN data was analyzed using power spectral density (PSD). Frankincense addition to the ferric chloride solution effectively reduced the pitting corrosion of AISI 304 SS. The pitting inhibition was concluded from the high fluctuations in current noises over the test period, its decreasing amplitude, the greater positive potential, the lower current values, and the lower spectral noise and noise resistances with increasing frankincense additions. Optical microscope images supported pitting inhibition with frankincense addition, where pits decreased in number per mm<jats:sup>2</jats:sup> and size. A significant decrease in the pit size and pits mm<jats:sup>−2</jats:sup> was observed with the 10 wt.% frankincense addition. It was attributed to the adsorption of the inhibitor on the stainless steel surface, inhibiting the adsorption of chloride ions. Additionally, frankincense addition reduced the corrosion current and increased the corrosion potential positively.","PeriodicalId":18269,"journal":{"name":"Materials Science-Poland","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science-Poland","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2478/msp-2023-0037","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To inhibit pitting corrosion of AISI 304 stainless steel (SS), the effect of different percentages of frankincense addition to a 0.5 M ferric chloride solution was explored in this work for the first time. The samples were investigated for pitting corrosion susceptibility via electrochemical noise (EN) tests, where the current and potential noises were recorded for 10000 seconds, and potentiodynamic polarization. The frequency domain of EN data was analyzed using power spectral density (PSD). Frankincense addition to the ferric chloride solution effectively reduced the pitting corrosion of AISI 304 SS. The pitting inhibition was concluded from the high fluctuations in current noises over the test period, its decreasing amplitude, the greater positive potential, the lower current values, and the lower spectral noise and noise resistances with increasing frankincense additions. Optical microscope images supported pitting inhibition with frankincense addition, where pits decreased in number per mm2 and size. A significant decrease in the pit size and pits mm−2 was observed with the 10 wt.% frankincense addition. It was attributed to the adsorption of the inhibitor on the stainless steel surface, inhibiting the adsorption of chloride ions. Additionally, frankincense addition reduced the corrosion current and increased the corrosion potential positively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用绿色乳香改性氯化铁溶液增强 AISI 304 不锈钢的点蚀抑制能力
为了抑制 AISI 304 不锈钢(SS)的点蚀,本研究首次探讨了在 0.5 M 氯化铁溶液中添加不同比例乳香的效果。通过电化学噪声(EN)测试(记录 10000 秒的电流和电位噪声)和电位极化,对样品的点蚀敏感性进行了研究。使用功率谱密度(PSD)对 EN 数据的频域进行了分析。在氯化铁溶液中添加乳香可有效减少 AISI 304 SS 的点腐蚀。随着乳香添加量的增加,测试期间的电流噪声波动较大,振幅逐渐减小,正电势增大,电流值降低,频谱噪声和噪声阻抗降低,由此得出点蚀抑制的结论。光学显微镜图像显示,添加乳香可抑制点蚀,每平方毫米的点蚀数量和大小都有所减少。乳香添加量为 10 wt.%时,凹坑大小和凹坑平方毫米数明显减少。这是因为不锈钢表面吸附了抑制剂,抑制了氯离子的吸附。此外,乳香的添加还降低了腐蚀电流,并正向提高了腐蚀电位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science-Poland
Materials Science-Poland MATERIALS SCIENCE, MULTIDISCIPLINARY-
自引率
18.20%
发文量
18
期刊介绍: Material Sciences-Poland is an interdisciplinary journal devoted to experimental research into results on the relationships between structure, processing, properties, technology, and uses of materials. Original research articles and review can be only submitted.
期刊最新文献
Nanofibrous membranes loaded with bupivacaine and carica papaya extract for pain management and wound healing in postoperative wounds Dental pulp regeneration via dental pulp stem cells conditioned media and curcumin-loaded nanocomposite hydrogel: an in vitro and in vivo study The performance of CFRP-strengthened heat-damaged metakaolin-based geopolymer concrete cylinders containing reclaimed asphalt aggregate Non-isothermal melt- and cold-crystallization, melting process, and optical and mechanical properties of PLLA: the effect of TAPH A Review of Biomass-Derived Biochar and Its Potential in Asphalt Pavement Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1