Probing the exchange of CO2 and O2 in the shallow critical zone during weathering of marl and black shale

IF 2.8 2区 地球科学 Q2 GEOGRAPHY, PHYSICAL Earth Surface Dynamics Pub Date : 2024-01-31 DOI:10.5194/esurf-12-271-2024
Tobias Roylands, Robert G. Hilton, Erin L. McClymont, Mark H. Garnett, Guillaume Soulet, Sébastien Klotz, Mathis Degler, Felipe Napoleoni, Caroline Le Bouteiller
{"title":"Probing the exchange of CO2 and O2 in the shallow critical zone during weathering of marl and black shale","authors":"Tobias Roylands, Robert G. Hilton, Erin L. McClymont, Mark H. Garnett, Guillaume Soulet, Sébastien Klotz, Mathis Degler, Felipe Napoleoni, Caroline Le Bouteiller","doi":"10.5194/esurf-12-271-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Chemical weathering of sedimentary rocks can release carbon dioxide (CO2) and consume oxygen (O2) via the oxidation of petrogenic organic carbon and sulfide minerals. These pathways govern Earth's surface system and climate over geological timescales, but the present-day weathering fluxes and their environmental controls are only partly constrained due to a lack of in situ measurements. Here, we investigate the gaseous exchange of CO2 and O2 during the oxidative weathering of black shales and marls exposed in the French southern Alps. On six field trips over 1 year, we use drilled headspace chambers to measure the CO2 concentrations in the shallow critical zone and quantify CO2 fluxes in real time. Importantly, we develop a new approach to estimate the volume of rock that contributes CO2 to a chamber, and assess effective diffusive gas exchange, by first quantifying the mass of CO2 that is stored in a chamber and connected rock pores. Both rock types are characterized by similar contributing rock volumes and diffusive movement of CO2. However, CO2 emissions differed between the rock types, with yields over rock outcrop surfaces (inferred from the contributing rock volume and the local weathering depths) ranging on average between 73 and 1108 tCkm-2yr-1 for black shales and between 43 and 873 tCkm-2yr-1 for marls over the study period. Having quantified diffusive processes, chamber-based O2 concentration measurements are used to calculate O2 fluxes. The rate of O2 consumption increased with production of CO2, and with increased temperature, with an average O2:CO2 molar ratio of 10:1. If O2 consumption occurs by both rock organic carbon oxidation and carbonate dissolution coupled to sulfide oxidation, either an additional O2 sink needs to be identified or significant export of dissolved inorganic carbon occurs from the weathering zone. Together, our findings refine the tools we have to probe CO2 and O2 exchange in rocks at Earth's surface and shed new light on CO2 and O2 fluxes, their drivers, and the fate of rock-derived carbon.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":"37 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/esurf-12-271-2024","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Chemical weathering of sedimentary rocks can release carbon dioxide (CO2) and consume oxygen (O2) via the oxidation of petrogenic organic carbon and sulfide minerals. These pathways govern Earth's surface system and climate over geological timescales, but the present-day weathering fluxes and their environmental controls are only partly constrained due to a lack of in situ measurements. Here, we investigate the gaseous exchange of CO2 and O2 during the oxidative weathering of black shales and marls exposed in the French southern Alps. On six field trips over 1 year, we use drilled headspace chambers to measure the CO2 concentrations in the shallow critical zone and quantify CO2 fluxes in real time. Importantly, we develop a new approach to estimate the volume of rock that contributes CO2 to a chamber, and assess effective diffusive gas exchange, by first quantifying the mass of CO2 that is stored in a chamber and connected rock pores. Both rock types are characterized by similar contributing rock volumes and diffusive movement of CO2. However, CO2 emissions differed between the rock types, with yields over rock outcrop surfaces (inferred from the contributing rock volume and the local weathering depths) ranging on average between 73 and 1108 tCkm-2yr-1 for black shales and between 43 and 873 tCkm-2yr-1 for marls over the study period. Having quantified diffusive processes, chamber-based O2 concentration measurements are used to calculate O2 fluxes. The rate of O2 consumption increased with production of CO2, and with increased temperature, with an average O2:CO2 molar ratio of 10:1. If O2 consumption occurs by both rock organic carbon oxidation and carbonate dissolution coupled to sulfide oxidation, either an additional O2 sink needs to be identified or significant export of dissolved inorganic carbon occurs from the weathering zone. Together, our findings refine the tools we have to probe CO2 and O2 exchange in rocks at Earth's surface and shed new light on CO2 and O2 fluxes, their drivers, and the fate of rock-derived carbon.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
泥灰岩和黑色页岩风化过程中浅临界区二氧化碳和氧气交换探测
摘要沉积岩的化学风化作用可释放二氧化碳(CO2),并通过岩石有机碳和硫化物矿物的氧化作用消耗氧气(O2)。这些途径在地质时间尺度上控制着地球表面系统和气候,但由于缺乏现场测量,目前的风化通量及其环境控制只能得到部分约束。在这里,我们研究了暴露在法国阿尔卑斯山南部的黑色页岩和泥灰岩氧化风化过程中二氧化碳和氧气的气体交换。在历时一年的六次实地考察中,我们使用钻孔顶空气室测量了浅临界区的二氧化碳浓度,并对二氧化碳通量进行了实时量化。重要的是,我们开发了一种新方法,通过首先量化储存在腔室和相连岩石孔隙中的二氧化碳质量,来估算向腔室提供二氧化碳的岩石体积,并评估有效的气体扩散交换。这两种岩石类型的特征都是具有相似的岩石贡献量和二氧化碳扩散运动。然而,不同类型岩石的二氧化碳排放量却不尽相同,在研究期间,岩石露头表面的二氧化碳排放量(根据成岩体积和局部风化深度推断)平均为:黑页岩 73 至 1108 吨二氧化碳/年,泥灰岩 43 至 873 吨二氧化碳/年。在对扩散过程进行量化之后,利用基于室的氧气浓度测量来计算氧气通量。随着二氧化碳的产生和温度的升高,O2 的消耗速率也在增加,平均 O2:CO2 摩尔比为 10:1。如果岩石有机碳氧化和碳酸盐溶解加上硫化物氧化都会消耗氧气,那么要么需要找到额外的氧气汇,要么风化带会大量输出溶解的无机碳。总之,我们的研究结果完善了地球表面岩石中二氧化碳和氧气交换的探测工具,并为二氧化碳和氧气通量、其驱动因素以及岩石衍生碳的命运提供了新的线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth Surface Dynamics
Earth Surface Dynamics GEOGRAPHY, PHYSICALGEOSCIENCES, MULTIDISCI-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
5.40
自引率
5.90%
发文量
56
审稿时长
20 weeks
期刊介绍: Earth Surface Dynamics (ESurf) is an international scientific journal dedicated to the publication and discussion of high-quality research on the physical, chemical, and biological processes shaping Earth''s surface and their interactions on all scales.
期刊最新文献
Exotic tree plantations in the Chilean Coastal Range: balancing the effects of discrete disturbances, connectivity, and a persistent drought on catchment erosion Role of the forcing sources in morphodynamic modelling of an embayed beach Equilibrium distance from long-range dune interactions An empirically-derived hydraulic head model controlling water storage and outflow over a decade in degraded permafrost rock slopes (Zugspitze, D/A) Geomorphic imprint of high mountain floods: Insight from the 2022 hydrological extreme across the Upper Indus terrain in NW Himalayas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1