Alpha and beta-voltaic silicon devices operated at cryogenic temperatures: An energy source for deep space exploration

Vittorio Giulio Palmieri , Maurizio Casalino , Emiliano Di Gennaro , Emanuele Romeo , Roberto Russo
{"title":"Alpha and beta-voltaic silicon devices operated at cryogenic temperatures: An energy source for deep space exploration","authors":"Vittorio Giulio Palmieri ,&nbsp;Maurizio Casalino ,&nbsp;Emiliano Di Gennaro ,&nbsp;Emanuele Romeo ,&nbsp;Roberto Russo","doi":"10.1016/j.nxener.2024.100101","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays the interest in deep space exploration is very strong; however, powering devices where sunlight is unavailable is a challenging task. Conventional radioisotope thermoelectric generators are difficult to miniaturize, while low-energy particle voltaic devices lack sufficient power density. In this study, we experimentally investigated the use of state-of-the-art 5 × 5 mm<sup>2</sup> silicon pad radiation detectors operated at cryogenic temperatures as high-energy particle voltaic devices. Our results show that operating the detectors at 80 K with <sup>241</sup>Am (0.1 mCi) and <sup>90</sup>Sr- <sup>90</sup>Y (0.8 mCi) radioactive sources results in a maximum electrical power of 100 nW/cm<sup>2</sup> and 165 nW/cm<sup>2</sup>, respectively. These values correspond to 11% and 12% efficiency, which is unprecedented for silicon voltaic devices. Additionally, we found that the device’s radiation hardness significantly increases at cryogenic temperatures, consistent with the Lazarus effect. After more than 270 h of continuous irradiation with the <sup>90</sup>Sr- <sup>90</sup>Y source at 80 K, the device’s residual efficiency is as high as 1.8% and remains stable. This efficiency value could be increased by stacking multiple devices together, while passive radiative cooling in space allows reaching cryogenic temperatures without extra power.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000061/pdfft?md5=0567eb6ca9032a6d8eb6b7f685c10954&pid=1-s2.0-S2949821X24000061-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays the interest in deep space exploration is very strong; however, powering devices where sunlight is unavailable is a challenging task. Conventional radioisotope thermoelectric generators are difficult to miniaturize, while low-energy particle voltaic devices lack sufficient power density. In this study, we experimentally investigated the use of state-of-the-art 5 × 5 mm2 silicon pad radiation detectors operated at cryogenic temperatures as high-energy particle voltaic devices. Our results show that operating the detectors at 80 K with 241Am (0.1 mCi) and 90Sr- 90Y (0.8 mCi) radioactive sources results in a maximum electrical power of 100 nW/cm2 and 165 nW/cm2, respectively. These values correspond to 11% and 12% efficiency, which is unprecedented for silicon voltaic devices. Additionally, we found that the device’s radiation hardness significantly increases at cryogenic temperatures, consistent with the Lazarus effect. After more than 270 h of continuous irradiation with the 90Sr- 90Y source at 80 K, the device’s residual efficiency is as high as 1.8% and remains stable. This efficiency value could be increased by stacking multiple devices together, while passive radiative cooling in space allows reaching cryogenic temperatures without extra power.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在低温条件下运行的阿尔法和贝塔光伏硅装置:深空探索的能源
如今,人们对深空探索的兴趣非常浓厚;然而,在没有阳光的地方为设备供电是一项具有挑战性的任务。传统的放射性同位素热电发生器难以小型化,而低能粒子伏特装置又缺乏足够的功率密度。在这项研究中,我们通过实验研究了在低温条件下使用最先进的 5 × 5 mm2 硅垫辐射探测器作为高能粒子伏发电设备的情况。结果表明,在 80 K 温度下使用 241Am(0.1 mCi)和 90Sr- 90Y(0.8 mCi)放射源操作探测器,最大电功率分别为 100 nW/cm2 和 165 nW/cm2。这些数值相当于 11% 和 12% 的效率,这在硅伏特设备中是前所未有的。此外,我们还发现该器件的辐射硬度在低温条件下会显著增加,这与拉扎罗斯效应是一致的。在 80 K 温度下,90Sr- 90Y 源连续辐照超过 270 小时后,该器件的残余效率高达 1.8%,并保持稳定。这一效率值可以通过将多个装置堆叠在一起来提高,而空间被动辐射冷却则可以在不需要额外功率的情况下达到低温。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dry reforming of methane and interaction between NiO and CeZrPrOx oxide in different crystallographic plane Hierarchical control of inverter-based microgrid with droop approach and proportional-integral controller Assessment of Iron(III) chloride as a catalyst for the production of hydrogen from the supercritical water gasification of microalgae In situ growth of 3D nano-array architecture Bi2S3/nickel foam assembled by interwoven nanosheets electrodes for hybrid supercapacitor Reducing resistances of all-solid-state polymer batteries via hot-press activation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1