Influence of Production Modes on the Structure and Tribological Properties of Sintered Tin Bronze during Friction with Lubricant in Friction Units

IF 0.5 4区 工程技术 Q4 ENGINEERING, MECHANICAL Journal of Friction and Wear Pub Date : 2024-01-30 DOI:10.3103/S1068366623050057
A. V. Liashok, L. N. Dyachkova, A. N. Rogovoy, E. V. Rabtsevich, D. V. Orda, S. V. Grigoriev
{"title":"Influence of Production Modes on the Structure and Tribological Properties of Sintered Tin Bronze during Friction with Lubricant in Friction Units","authors":"A. V. Liashok,&nbsp;L. N. Dyachkova,&nbsp;A. N. Rogovoy,&nbsp;E. V. Rabtsevich,&nbsp;D. V. Orda,&nbsp;S. V. Grigoriev","doi":"10.3103/S1068366623050057","DOIUrl":null,"url":null,"abstract":"<p>The results of a study on the influence of the modes of obtaining sintered BrO12 bronze on its structure, phase composition and tribological properties during friction with a lubricant are presented. It is shown that the phase composition of BrO12 bronze sintered for 5 min consists of a solid solution of tin in copper and inclusions of intermetallic phases δ-Cu41Sn11 and Cu81nSn22. An increase in the exposure time during sintering leads to an increase in the homogeneity of the solid solution of tin in copper, a decrease in the crystal lattice parameter of copper from 3.69 to 3.68 Å, an increase in the grain size from 2–5 µm at 5 min of sintering to 15–46 µm at 120 min, a decrease in the content of the intermetallic phase δ-Cu41Sn11, and the disappearance of the Cu81nSn22 phase at 60 min of sintering and the virtual absence of intermetallic compounds after sintering for 120 min. Tribological tests have shown that the friction coefficient of bronze sintered for 5 min at a pressure of 4 MPa varies from 0.08 to 0.03, and at 20 MPa, from 0.105 to 0.04, the average wear value at a pressure of 4 MPa and 20 MPa was 2.0 µm. The coefficient of friction at the above pressures of bronze sintered for 60 min was 0.11–0.036 and 0.095–0.023; 0.045 and 0.12–0.5, respectively, wear was 6.3 µm.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Friction and Wear","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S1068366623050057","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The results of a study on the influence of the modes of obtaining sintered BrO12 bronze on its structure, phase composition and tribological properties during friction with a lubricant are presented. It is shown that the phase composition of BrO12 bronze sintered for 5 min consists of a solid solution of tin in copper and inclusions of intermetallic phases δ-Cu41Sn11 and Cu81nSn22. An increase in the exposure time during sintering leads to an increase in the homogeneity of the solid solution of tin in copper, a decrease in the crystal lattice parameter of copper from 3.69 to 3.68 Å, an increase in the grain size from 2–5 µm at 5 min of sintering to 15–46 µm at 120 min, a decrease in the content of the intermetallic phase δ-Cu41Sn11, and the disappearance of the Cu81nSn22 phase at 60 min of sintering and the virtual absence of intermetallic compounds after sintering for 120 min. Tribological tests have shown that the friction coefficient of bronze sintered for 5 min at a pressure of 4 MPa varies from 0.08 to 0.03, and at 20 MPa, from 0.105 to 0.04, the average wear value at a pressure of 4 MPa and 20 MPa was 2.0 µm. The coefficient of friction at the above pressures of bronze sintered for 60 min was 0.11–0.036 and 0.095–0.023; 0.045 and 0.12–0.5, respectively, wear was 6.3 µm.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生产模式对烧结锡青铜在摩擦装置中与润滑剂摩擦时的结构和摩擦学特性的影响
摘要-- 本文介绍了关于烧结 BrO12 青铜的获得方式对其结构、相组成和与润滑剂摩擦时的摩擦学特性的影响的研究结果。研究表明,烧结 5 分钟的 BrO12 青铜的相组成包括锡在铜中的固溶体以及金属间相δ-Cu41Sn11 和 Cu81nSn22 的夹杂物。烧结过程中暴露时间的增加会导致锡在铜中固溶体的均匀性增加,铜的晶格参数从 3.69 Å 下降到 3.68 Å,晶粒大小从烧结 5 分钟时的 2-5 µm 增加到 120 分钟时的 15-46 µm,金属间化合物相 δ-Cu41Sn11 的含量减少,烧结 60 分钟时 Cu81nSn22 相消失,烧结 120 分钟后金属间化合物几乎不存在。摩擦学试验表明,在 4 兆帕压力下烧结 5 分钟的青铜的摩擦系数从 0.08 到 0.03 不等,在 20 兆帕压力下从 0.105 到 0.04 不等,在 4 兆帕和 20 兆帕压力下的平均磨损值为 2.0 微米。烧结 60 分钟的青铜在上述压力下的摩擦系数分别为 0.11-0.036 和 0.095-0.023; 0.045 和 0.12-0.5, 磨损为 6.3 µm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Friction and Wear
Journal of Friction and Wear ENGINEERING, MECHANICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
1.50
自引率
28.60%
发文量
21
审稿时长
6-12 weeks
期刊介绍: Journal of Friction and Wear is intended to bring together researchers and practitioners working in tribology. It provides novel information on science, practice, and technology of lubrication, wear prevention, and friction control. Papers cover tribological problems of physics, chemistry, materials science, and mechanical engineering, discussing issues from a fundamental or technological point of view.
期刊最新文献
Tribological Characteristics of a Friction Composition of Metal-Ceramic Powders and Carbon-Containing Additives on a Polymer Binder Method for Determination of the Friction Coefficient during Cold Rolling of Extra Thin Sheets Influence of Ultrafine Additives of Intermetallides on the Structure, Mechanical, and Tribotechnical Properties of Sintered Tin Bronze To Increase Wear Resistance of Screw Cylindrical Compression Springs Working with Coil Contacts Calculation and Analytical Prediction of Coating Wear during Tribological Tests Based on Models of Contact Fatigue Failure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1