首页 > 最新文献

Journal of Friction and Wear最新文献

英文 中文
Tribological Characteristics of a Friction Composition of Metal-Ceramic Powders and Carbon-Containing Additives on a Polymer Binder 金属陶瓷粉末和含碳添加剂在聚合物粘合剂上的摩擦学特性
IF 0.5 4区 工程技术 Q4 ENGINEERING, MECHANICAL Pub Date : 2024-11-08 DOI: 10.3103/S1068366624700235
A. Ph. Ilyushchanka, A. V. Liashok, A. I. Shevtsov, A. N. Rogovoy

Research is carried out on the wear resistance and friction coefficients of a friction composition made from PC30, Al2O3, SiO2, TiO2, and Cr2O powders and an additive containing carbon fiber in combination with GE-1 graphite, using the SFP-012A phenolic powder binder material. The study of tribotechnical properties is carried out on an IM-58 inertial stand. Using a stereoscopic microscope and a scanning electron microscope with a micro-X-ray spectral attachment, the morphology of the friction surfaces of experimental samples is analyzed, and information about the elements forming the friction surface is obtained. It is established that promising additives for the friction composition are 5–6% coarse Al2O3 and SiO2 powders. They promote an increase in friction of the friction material to the recommended minimum value of 0.3. Promising additives also include carbon fiber in an amount of 25–50%, which makes it possible to maintain the wear rate of the composition at a level not exceeding 30 µm/km. By increasing the carbon fiber content to 50%, a minimum value of the friction coefficient was obtained at the initial moment of contact of the tribocoupling surfaces. In this case, the experimental curve of changes in the friction coefficient is characterized by a smooth transition to the slipping region.

使用 SFP-012A 酚醛粉末粘合剂材料,对由 PC30、Al2O3、SiO2、TiO2 和 Cr2O 粉末以及含有碳纤维的添加剂与 GE-1 石墨组合而成的摩擦组合物的耐磨性和摩擦系数进行了研究。摩擦技术性能的研究是在 IM-58 惯性台架上进行的。使用带显微 X 射线光谱附件的立体显微镜和扫描电子显微镜分析了实验样品摩擦表面的形态,并获得了有关形成摩擦表面的元素的信息。结果表明,对于摩擦成分来说,有希望的添加剂是 5-6% 的粗 Al2O3 和 SiO2 粉末。它们能将摩擦材料的摩擦力提高到建议的最小值 0.3。有前景的添加剂还包括含量为 25-50% 的碳纤维,这样可以将摩擦材料的磨损率保持在不超过 30 µm/km 的水平。将碳纤维含量增加到 50%,摩擦耦合表面接触的初始时刻摩擦系数就达到了最小值。在这种情况下,摩擦系数变化的实验曲线的特点是平滑过渡到滑动区域。
{"title":"Tribological Characteristics of a Friction Composition of Metal-Ceramic Powders and Carbon-Containing Additives on a Polymer Binder","authors":"A. Ph. Ilyushchanka,&nbsp;A. V. Liashok,&nbsp;A. I. Shevtsov,&nbsp;A. N. Rogovoy","doi":"10.3103/S1068366624700235","DOIUrl":"10.3103/S1068366624700235","url":null,"abstract":"<p>Research is carried out on the wear resistance and friction coefficients of a friction composition made from PC30, Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>, TiO<sub>2</sub>, and Cr<sub>2</sub>O powders and an additive containing carbon fiber in combination with GE-1 graphite, using the SFP-012A phenolic powder binder material. The study of tribotechnical properties is carried out on an IM-58 inertial stand. Using a stereoscopic microscope and a scanning electron microscope with a micro-X-ray spectral attachment, the morphology of the friction surfaces of experimental samples is analyzed, and information about the elements forming the friction surface is obtained. It is established that promising additives for the friction composition are 5–6% coarse Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub> powders. They promote an increase in friction of the friction material to the recommended minimum value of 0.3. Promising additives also include carbon fiber in an amount of 25–50%, which makes it possible to maintain the wear rate of the composition at a level not exceeding 30 µm/km. By increasing the carbon fiber content to 50%, a minimum value of the friction coefficient was obtained at the initial moment of contact of the tribocoupling surfaces. In this case, the experimental curve of changes in the friction coefficient is characterized by a smooth transition to the slipping region.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"45 3","pages":"152 - 159"},"PeriodicalIF":0.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
To Increase Wear Resistance of Screw Cylindrical Compression Springs Working with Coil Contacts 提高螺旋圆柱压缩弹簧的耐磨性
IF 0.5 4区 工程技术 Q4 ENGINEERING, MECHANICAL Pub Date : 2024-11-08 DOI: 10.3103/S1068366624700247
N. A. Zemlyanushnov, N. Y. Zemlyanushnova

During operation of springs, especially cyclic buffer and high-speed springs, there are inevitable relative movements of their surfaces, friction, and coil contacts. Due to friction, a lot of energy is converted into thermal energy, this is а cause of spring wear on the contact points of the coils and of overheating of the machines and mechanisms. The known methods of increasing spring resourcefulness do not consider the issue of friction and wear of springs surfaces contact. Тhe new technologies for increasing the wear resistance of compression springs using contact predeformation are presented in the article. In this case, an additional axial load exceeding the load on the spring in the product by more than 5% and determined theoretically at the stage of development of the technological process is applied to the compressed spring coils into contact. The exposure time under axial load is 1–1.5 s. Serial springs were manufactured and two batches of experimental springs were produced using new technologies. The dispersion of the force parameters of the springs of experimental batch No. 1 as compared with serial springs was reduced by 14.3%, and as compared with experimental batch No. 2 by 42.9%. After cyclic tests the decrease of workload for serial springs averaged 1.17%; for springs of experimental batch No. 1, 0.23%; for springs of experimental batch No. 2, 0.45%. Contact clamping not only promotes the formation of useful residual stresses, but also increases the bearing capacity of the springs. The strip of hardened material is formed, which increases the wear resistance of the contacting surfaces of the coils and reduces friction due to parallel layering. On the contact places of the spring coils, the specific pressure decreases and the deformation wear resistance of the springs increases. Therefore, contact clamping should also be considered as a finishing operation to reduce friction on the places of contact of the spring’s coils and increasing their wear resistance.

弹簧,尤其是循环缓冲弹簧和高速弹簧,在运行过程中,其表面不可避免地会发生相对运动、摩擦和线圈接触。由于摩擦,大量能量转化为热能,这是造成弹簧线圈接触点磨损以及机器和机构过热的一个原因。已知的提高弹簧灵活性的方法并未考虑弹簧接触面的摩擦和磨损问题。本文介绍了利用接触预变形提高压缩弹簧耐磨性的新技术。在这种情况下,对接触的压缩弹簧线圈施加的额外轴向载荷超过产品中弹簧载荷的 5%,该载荷是在技术工艺开发阶段从理论上确定的。轴向载荷下的暴露时间为 1-1.5 秒。采用新技术生产了系列弹簧和两批实验弹簧。与系列弹簧相比,1 号实验批次弹簧的力参数离散度降低了 14.3%,与 2 号实验批次弹簧相比,降低了 42.9%。循环测试后,系列弹簧的工作量平均减少了 1.17%;1 号实验批次弹簧减少了 0.23%;2 号实验批次弹簧减少了 0.45%。接触夹紧不仅能促进有用残余应力的形成,还能提高弹簧的承载能力。硬化材料条的形成,提高了线圈接触面的耐磨性,减少了平行分层造成的摩擦。在弹簧线圈的接触面上,比压减小,弹簧的变形耐磨性增加。因此,接触夹紧也应被视为一种精加工操作,以减少弹簧线圈接触面的摩擦并增加其耐磨性。
{"title":"To Increase Wear Resistance of Screw Cylindrical Compression Springs Working with Coil Contacts","authors":"N. A. Zemlyanushnov,&nbsp;N. Y. Zemlyanushnova","doi":"10.3103/S1068366624700247","DOIUrl":"10.3103/S1068366624700247","url":null,"abstract":"<p>During operation of springs, especially cyclic buffer and high-speed springs, there are inevitable relative movements of their surfaces, friction, and coil contacts. Due to friction, a lot of energy is converted into thermal energy, this is а cause of spring wear on the contact points of the coils and of overheating of the machines and mechanisms. The known methods of increasing spring resourcefulness do not consider the issue of friction and wear of springs surfaces contact. Тhe new technologies for increasing the wear resistance of compression springs using contact predeformation are presented in the article. In this case, an additional axial load exceeding the load on the spring in the product by more than 5% and determined theoretically at the stage of development of the technological process is applied to the compressed spring coils into contact. The exposure time under axial load is 1–1.5 s. Serial springs were manufactured and two batches of experimental springs were produced using new technologies. The dispersion of the force parameters of the springs of experimental batch No. 1 as compared with serial springs was reduced by 14.3%, and as compared with experimental batch No. 2 by 42.9%. After cyclic tests the decrease of workload for serial springs averaged 1.17%; for springs of experimental batch No. 1, 0.23%; for springs of experimental batch No. 2, 0.45%. Contact clamping not only promotes the formation of useful residual stresses, but also increases the bearing capacity of the springs. The strip of hardened material is formed, which increases the wear resistance of the contacting surfaces of the coils and reduces friction due to parallel layering. On the contact places of the spring coils, the specific pressure decreases and the deformation wear resistance of the springs increases. Therefore, contact clamping should also be considered as a finishing operation to reduce friction on the places of contact of the spring’s coils and increasing their wear resistance.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"45 3","pages":"160 - 166"},"PeriodicalIF":0.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Method for Determination of the Friction Coefficient during Cold Rolling of Extra Thin Sheets 超薄板材冷轧过程中摩擦系数的测定方法
IF 0.5 4区 工程技术 Q4 ENGINEERING, MECHANICAL Pub Date : 2024-11-08 DOI: 10.3103/S1068366624700223
V. A. Tomilo, S. V. Pilipenko, A. V. Dudan, O. P. Shtempel, T. V. Vigerina

The method is aimed at comparing the lubricating capacity of different emulsions. The purpose of the work is to evaluate the possibility of using a universal friction machine, type MMW-1A, to determine the value of the friction coefficient in the cold rolling of very thin strips of carbon steel. The article analyzes the research related to the methods of measuring the friction coefficient in lengthwise rolling. The methodology of experiment determination of friction coefficient value between the material of RCM-1250 reversing mill rolls (steel of working rolls—analog of 60S2HFA steel) and the sample of annealed strip, 0.224-mm thick, made of TS-435 steel grade (analog of 08ps steel, GOST 1050) has been developed. The selected friction conditions are semi-fluid friction. The experiment applied the emulsion, based on the lubricating-cooling liquid, such as Quaker 2185, and used an RCM-125 reversing mill. Two types of ring-shaped samples made of roll material were used in the experiment with wall thicknesses of S = 4 mm and S = 2 mm. The results of the experiments showed that the use of the ring-shaped sample with S = 4 mm is more reasonable from the point of view of stability of the created friction conditions. The recommended average value of friction coefficient between the above materials of rolls and strip was determined: fcf = 0.038. In the course of the experiment the values of the friction coefficient fluctuated within the boundaries, from the minimum of fmin = 0.012, to the maximum of fmax = 0.048. In general, these experimental results are correlated with reference data on the value of the friction coefficient for this type of rolling and the results of other experiments described in the literature, conducted under similar friction conditions. Proceeding from this, it is possible to draw a conclusion that estimation of the lubricating capacity of various lubricating-cooling liquids, application of universal friction machines of the design described in the article is expedient.

该方法旨在比较不同乳化液的润滑能力。这项工作的目的是评估使用 MMW-1A 型通用摩擦机确定极细碳钢带冷轧过程中摩擦系数值的可能性。文章分析了与纵向轧制摩擦系数测量方法有关的研究。已开发出 RCM-1250 反转轧辊材料(工作辊钢--类似于 60S2HFA 钢)与厚度为 0.224 毫米、由 TS-435 钢级(类似于 08ps 钢,GOST 1050)制成的退火带样品之间摩擦系数值的实验测定方法。所选摩擦条件为半流体摩擦。实验使用了基于润滑冷却液的乳化液,如 Quaker 2185,并使用了 RCM-125 反向碾磨机。实验中使用了两种由轧辊材料制成的环形样品,壁厚分别为 S = 4 毫米和 S = 2 毫米。实验结果表明,从所创造的摩擦条件的稳定性角度来看,使用 S = 4 毫米的环形样品更为合理。上述材料的轧辊和带材之间的摩擦系数的推荐平均值为:fcf = 0.038。在实验过程中,摩擦系数值在一定范围内波动,从最小值 fmin = 0.012 到最大值 fmax = 0.048。总的来说,这些实验结果与这种轧制方式的摩擦系数参考数据以及文献中描述的在类似摩擦条件下进行的其他实验结果是相关的。由此可以得出结论:估算各种润滑-冷却液体的润滑能力,应用文章中所述设计的通用摩擦设备是合适的。
{"title":"Method for Determination of the Friction Coefficient during Cold Rolling of Extra Thin Sheets","authors":"V. A. Tomilo,&nbsp;S. V. Pilipenko,&nbsp;A. V. Dudan,&nbsp;O. P. Shtempel,&nbsp;T. V. Vigerina","doi":"10.3103/S1068366624700223","DOIUrl":"10.3103/S1068366624700223","url":null,"abstract":"<p>The method is aimed at comparing the lubricating capacity of different emulsions. The purpose of the work is to evaluate the possibility of using a universal friction machine, type MMW-1A, to determine the value of the friction coefficient in the cold rolling of very thin strips of carbon steel. The article analyzes the research related to the methods of measuring the friction coefficient in lengthwise rolling. The methodology of experiment determination of friction coefficient value between the material of RCM-1250 reversing mill rolls (steel of working rolls—analog of 60S2HFA steel) and the sample of annealed strip, 0.224-mm thick, made of TS-435 steel grade (analog of 08ps steel, GOST 1050) has been developed. The selected friction conditions are semi-fluid friction. The experiment applied the emulsion, based on the lubricating-cooling liquid, such as Quaker 2185, and used an RCM-125 reversing mill. Two types of ring-shaped samples made of roll material were used in the experiment with wall thicknesses of <i>S</i> = 4 mm and <i>S</i> = 2 mm. The results of the experiments showed that the use of the ring-shaped sample with <i>S</i> = 4 mm is more reasonable from the point of view of stability of the created friction conditions. The recommended average value of friction coefficient between the above materials of rolls and strip was determined: <i>f</i><sub>cf</sub> = 0.038. In the course of the experiment the values of the friction coefficient fluctuated within the boundaries, from the minimum of <i>f</i><sub>min</sub> = 0.012, to the maximum of <i>f</i><sub>max</sub> = 0.048. In general, these experimental results are correlated with reference data on the value of the friction coefficient for this type of rolling and the results of other experiments described in the literature, conducted under similar friction conditions. Proceeding from this, it is possible to draw a conclusion that estimation of the lubricating capacity of various lubricating-cooling liquids, application of universal friction machines of the design described in the article is expedient.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"45 3","pages":"147 - 151"},"PeriodicalIF":0.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Substructural Changes in the Surface Layers of Composite Gas-Thermal Cu–(Al–Si) Coatings during Friction under Various Conditions 各种条件下复合气热铜-(铝-硅)涂层表面层在摩擦过程中的亚结构变化
IF 0.5 4区 工程技术 Q4 ENGINEERING, MECHANICAL Pub Date : 2024-11-08 DOI: 10.3103/S1068366624700211
A. N. Grigorchik, V. A. Kukareko

The structure, phase composition, hardness, and tribological properties of composite gas-thermal 50% Cu–50% (Al–Si) coatings under various friction conditions were studied. It has been shown that during the process of high-speed metallization, active interaction of molten aluminum and copper particles occurs, leading to the formation of solid solutions and intermetallic compounds in sprayed coatings. In particular, in 50% Cu–50% (Al–Si) coatings, in addition to the matrix phases of Cu and Al, intermetallic compounds Cu9Al4, CuAl2, and Cu3Al are recorded. The hardness and microhardness of the composite are 180 HV 1 and 180–190 HV 0.025, respectively. It has been established that a composite coating of 50% Cu–50% (Al–Si) has higher wear resistance under various friction conditions than the widely used coating of CuSn11P-C antifriction bronze, obtained by centrifugal induction surfacing. In particular, in the environment of I-20A lubricant, the wear resistance of the composite coating exceeds the wear resistance of bronze by ≈1.2 times, in the environment of Litol-24 plastic lubricant, by ≈1.4 times, and with dry friction up to ≈2.8 times. It has been shown that during boundary friction, dislocations accumulate in aluminum particles of the composite, while in copper particles at elevated test pressures, a predominant formation of a subgrain structure occurs. Based on the studies conducted, it was concluded that the increased wear resistance of the composite is due to the presence of solid intermetallic compounds in it, solid solution strengthening, the presence of silicon in aluminum interlayers, as well as dislocation strengthening of aluminum interlayers and the formation of a subgrain structure in copper interlayers.

研究了各种摩擦条件下复合气热 50%铜-50%(铝-硅)涂层的结构、相组成、硬度和摩擦学性能。研究表明,在高速金属化过程中,熔融的铝和铜粒子会发生活跃的相互作用,从而在喷涂涂层中形成固溶体和金属间化合物。特别是在 50%铜-50%(铝-硅)涂层中,除了铜和铝的基体相之外,还记录到金属间化合物 Cu9Al4、CuAl2 和 Cu3Al。复合材料的硬度和显微硬度分别为 180 HV 1 和 180-190 HV 0.025。结果表明,在各种摩擦条件下,50% Cu-50% (Al-Si) 复合涂层的耐磨性高于通过离心感应堆焊获得的广泛使用的 CuSn11P-C 抗摩擦青铜涂层。特别是在 I-20A 润滑剂环境下,复合涂层的耐磨性比青铜的耐磨性高出≈1.2 倍;在 Litol-24 塑料润滑剂环境下,复合涂层的耐磨性比青铜的耐磨性高出≈1.4 倍;在干摩擦环境下,复合涂层的耐磨性比青铜的耐磨性高出≈2.8 倍。研究表明,在边界摩擦过程中,复合材料的铝颗粒中会积累位错,而在试验压力升高时,铜颗粒中主要会形成亚晶粒结构。根据所进行的研究,得出的结论是,复合材料耐磨性的提高是由于其中存在固态金属间化合物、固溶体强化、铝夹层中硅的存在,以及铝夹层的位错强化和铜夹层亚晶粒结构的形成。
{"title":"Substructural Changes in the Surface Layers of Composite Gas-Thermal Cu–(Al–Si) Coatings during Friction under Various Conditions","authors":"A. N. Grigorchik,&nbsp;V. A. Kukareko","doi":"10.3103/S1068366624700211","DOIUrl":"10.3103/S1068366624700211","url":null,"abstract":"<p>The structure, phase composition, hardness, and tribological properties of composite gas-thermal 50% Cu–50% (Al–Si) coatings under various friction conditions were studied. It has been shown that during the process of high-speed metallization, active interaction of molten aluminum and copper particles occurs, leading to the formation of solid solutions and intermetallic compounds in sprayed coatings. In particular, in 50% Cu–50% (Al–Si) coatings, in addition to the matrix phases of Cu and Al, intermetallic compounds Cu<sub>9</sub>Al<sub>4</sub>, CuAl<sub>2</sub>, and Cu<sub>3</sub>Al are recorded. The hardness and microhardness of the composite are 180 HV 1 and 180–190 HV 0.025, respectively. It has been established that a composite coating of 50% Cu–50% (Al–Si) has higher wear resistance under various friction conditions than the widely used coating of CuSn11P-C antifriction bronze, obtained by centrifugal induction surfacing. In particular, in the environment of I-20A lubricant, the wear resistance of the composite coating exceeds the wear resistance of bronze by ≈1.2 times, in the environment of Litol-24 plastic lubricant, by ≈1.4 times, and with dry friction up to ≈2.8 times. It has been shown that during boundary friction, dislocations accumulate in aluminum particles of the composite, while in copper particles at elevated test pressures, a predominant formation of a subgrain structure occurs. Based on the studies conducted, it was concluded that the increased wear resistance of the composite is due to the presence of solid intermetallic compounds in it, solid solution strengthening, the presence of silicon in aluminum interlayers, as well as dislocation strengthening of aluminum interlayers and the formation of a subgrain structure in copper interlayers.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"45 3","pages":"140 - 146"},"PeriodicalIF":0.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calculation and Analytical Prediction of Coating Wear during Tribological Tests Based on Models of Contact Fatigue Failure 基于接触疲劳破坏模型的摩擦学试验中涂层磨损的计算和分析预测
IF 0.5 4区 工程技术 Q4 ENGINEERING, MECHANICAL Pub Date : 2024-11-08 DOI: 10.3103/S1068366624700272
O. V. Kudryakov, V. I. Kolesnikov, I. N. Kavaliova, I. V. Kolesnikov, D. S. Manturov

The work examines the conditions of tribological tests of steel samples with nitride ion-plasma coatings. A calculation and analytical model is proposed for quantitative assessment of contact and wear parameters during sliding friction tests: the size of the contact area, the depth of contact approach, the depth of the plastic zone, stresses in the coating, fatigue limit, and the critical thickness of the coating, which excludes its deflection. It has been shown that coatings with a thickness above critical realize their potential for physical, mechanical, and tribological properties regardless of the substrate. If the coating thickness is insufficient, the result of tribological tests is determined by the behavior of the “coating–substrate” system, a high-hard nitride coating on a ductile steel substrate experiences deflection and premature brittle failure. To assess the wear of coatings in this case, it is recommended to use fatigue failure models with construction of the Wöhler fatigue curve and determination of the fatigue limit based on the Murakami–Endo theory. The implementation of the recommended approach was carried out for the studied nitride coatings using a database of our own experimental data.

该研究对带有氮化物离子等离子涂层的钢制样品进行摩擦学试验。提出了一个计算和分析模型,用于定量评估滑动摩擦试验中的接触和磨损参数:接触面积大小、接触深度、塑性区深度、涂层中的应力、疲劳极限以及涂层的临界厚度(不包括挠度)。研究表明,涂层厚度超过临界厚度时,无论基材如何,都能发挥其在物理、机械和摩擦学特性方面的潜力。如果涂层厚度不足,摩擦学测试的结果将由 "涂层-基体 "系统的行为决定,在韧性钢基体上的高硬度氮化物涂层会出现变形和过早的脆性破坏。为了评估这种情况下涂层的磨损,建议使用疲劳失效模型,构建沃勒疲劳曲线,并根据村上-恩多理论确定疲劳极限。我们利用自己的实验数据数据库,对所研究的氮化物涂层实施了推荐的方法。
{"title":"Calculation and Analytical Prediction of Coating Wear during Tribological Tests Based on Models of Contact Fatigue Failure","authors":"O. V. Kudryakov,&nbsp;V. I. Kolesnikov,&nbsp;I. N. Kavaliova,&nbsp;I. V. Kolesnikov,&nbsp;D. S. Manturov","doi":"10.3103/S1068366624700272","DOIUrl":"10.3103/S1068366624700272","url":null,"abstract":"<p>The work examines the conditions of tribological tests of steel samples with nitride ion-plasma coatings. A calculation and analytical model is proposed for quantitative assessment of contact and wear parameters during sliding friction tests: the size of the contact area, the depth of contact approach, the depth of the plastic zone, stresses in the coating, fatigue limit, and the critical thickness of the coating, which excludes its deflection. It has been shown that coatings with a thickness above critical realize their potential for physical, mechanical, and tribological properties regardless of the substrate. If the coating thickness is insufficient, the result of tribological tests is determined by the behavior of the “coating–substrate” system, a high-hard nitride coating on a ductile steel substrate experiences deflection and premature brittle failure. To assess the wear of coatings in this case, it is recommended to use fatigue failure models with construction of the Wöhler fatigue curve and determination of the fatigue limit based on the Murakami–Endo theory. The implementation of the recommended approach was carried out for the studied nitride coatings using a database of our own experimental data.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"45 3","pages":"179 - 187"},"PeriodicalIF":0.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Treatment in a Magnetic Field on the Triboacoustic Characteristics of Copper-Containing Polymer Friction Composites 磁场处理对含铜聚合物摩擦复合材料三声特性的影响
IF 0.5 4区 工程技术 Q4 ENGINEERING, MECHANICAL Pub Date : 2024-11-08 DOI: 10.3103/S1068366624700193
V. P. Sergienko, S. N. Bukharov, A. G. Anisovich, V. K. Merinov, N. S. Abed, A. R. Alexiev

The effect of treatment with a pulsed magnetic field on the triboacoustic characteristics of polymer friction composites containing up to 20 wt % dispersed copper. It has been shown that among various physical and mechanical properties, a statistically significant response to magnetic field treatment of a mixture of composite components is demonstrated by dynamic mechanical characteristics. It was found that magnetic treatment of initial mixtures of composites in both unipolar and bipolar modes with a field strength of 20 kA/m leads to a decrease in the difference between the coefficients of static and dynamic friction by 3.0—3.4 times without a statistically significant change in the wear rate and loss of braking efficiency. A reduction in sound pressure levels during friction by 23–24 dB in the frequency range above 2 kHz has been experimentally confirmed.

用脉冲磁场处理对含高达 20 wt % 分散铜的聚合物摩擦复合材料的三声特性的影响。研究表明,在各种物理和机械特性中,动态机械特性对复合材料成分混合物的磁场处理具有显著的统计学响应。研究发现,在磁场强度为 20 kA/m 的单极和双极模式下,对复合材料的初始混合物进行磁处理,可使静摩擦系数和动摩擦系数之差减少 3.0-3.4 倍,而磨损率和制动效率损失在统计上没有明显变化。实验证实,摩擦时的声压级在 2 kHz 以上的频率范围内降低了 23-24 dB。
{"title":"Effect of Treatment in a Magnetic Field on the Triboacoustic Characteristics of Copper-Containing Polymer Friction Composites","authors":"V. P. Sergienko,&nbsp;S. N. Bukharov,&nbsp;A. G. Anisovich,&nbsp;V. K. Merinov,&nbsp;N. S. Abed,&nbsp;A. R. Alexiev","doi":"10.3103/S1068366624700193","DOIUrl":"10.3103/S1068366624700193","url":null,"abstract":"<p>The effect of treatment with a pulsed magnetic field on the triboacoustic characteristics of polymer friction composites containing up to 20 wt % dispersed copper. It has been shown that among various physical and mechanical properties, a statistically significant response to magnetic field treatment of a mixture of composite components is demonstrated by dynamic mechanical characteristics. It was found that magnetic treatment of initial mixtures of composites in both unipolar and bipolar modes with a field strength of 20 kA/m leads to a decrease in the difference between the coefficients of static and dynamic friction by 3.0—3.4 times without a statistically significant change in the wear rate and loss of braking efficiency. A reduction in sound pressure levels during friction by 23–24 dB in the frequency range above 2 kHz has been experimentally confirmed.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"45 3","pages":"123 - 131"},"PeriodicalIF":0.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combined Anti-Friction Coatings Based on Nichrome and Copper 基于镍铬和铜的复合抗摩擦涂层
IF 0.5 4区 工程技术 Q4 ENGINEERING, MECHANICAL Pub Date : 2024-11-08 DOI: 10.3103/S1068366624700260
I. S. Kuznetsov, N. S. Chernyshov, V. N. Logachev, N. V. Titov, V. P. Lyalyakin

This work examines combined antifriction coatings obtained by electric spark processing of a metal substrate with an electrode made of the X20N80 alloy, followed by filling discontinuities, depressions, and pores with copper powder. Copper powder was applied using supersonic gas-dynamic spraying. The combined coatings under study had a thickness of 60–350 μm. The work also obtained the dependences of the friction coefficients for coatings with different surface areas of the electric spark and copper components. The magnitude of the friction coefficient depends on the applied load. It was found that the minimum friction coefficient for coatings was in the range of 0.077–0.142. The pressure values for the appearance of plastic contact for various types of experimental coatings are in the range of 178–241.5 MPa. Coatings with a higher percentage of copper on the surface, other things being equal, have a lower temperature in the friction zone. Reducing the area of the electric spark component from 78 to 4% makes it possible to reduce the temperature in the friction zone by 2.5 times. At a relative sliding speed of 55 m/min, a self-lubricating effect is observed. The quasi-liquid form of copper is fragmentarily transferred into the roughness cavities of the electric spark component. As a result of the research, combined antifriction coatings with a surface area of the electric spark component of less than 50% are recommended for use in friction units with contact pressure up to 240 MPa; in pairs with contact pressure below 170 MPa, coatings with an area of the electric spark component of 4–30%, having low coefficient of friction.

这项工作研究的是通过电火花加工金属基材与 X20N80 合金制成的电极,然后用铜粉填充不连续性、凹陷和孔隙而获得的组合式减摩涂层。铜粉是采用超音速气体动力喷涂技术喷涂的。所研究的组合涂层厚度为 60-350 μm。研究还获得了不同表面积的电火花和铜成分涂层的摩擦系数。摩擦系数的大小取决于施加的载荷。研究发现,涂层的最小摩擦系数在 0.077-0.142 之间。各类实验涂层出现塑性接触的压力值在 178-241.5 兆帕之间。在其他条件相同的情况下,表面铜含量较高的涂层在摩擦区的温度较低。将电火花成分的面积从 78% 减少到 4%,可使摩擦区的温度降低 2.5 倍。在相对滑动速度为 55 米/分钟时,可观察到自润滑效果。铜的准液态形式被零散地转移到电火花元件的粗糙腔中。研究结果表明,建议在接触压力高达 240 兆帕的摩擦装置中使用电火花成分表面积小于 50%的组合式抗摩擦涂层;在接触压力低于 170 兆帕的摩擦副中,建议使用电火花成分面积为 4-30% 的涂层,因为其摩擦系数较低。
{"title":"Combined Anti-Friction Coatings Based on Nichrome and Copper","authors":"I. S. Kuznetsov,&nbsp;N. S. Chernyshov,&nbsp;V. N. Logachev,&nbsp;N. V. Titov,&nbsp;V. P. Lyalyakin","doi":"10.3103/S1068366624700260","DOIUrl":"10.3103/S1068366624700260","url":null,"abstract":"<p>This work examines combined antifriction coatings obtained by electric spark processing of a metal substrate with an electrode made of the X20N80 alloy, followed by filling discontinuities, depressions, and pores with copper powder. Copper powder was applied using supersonic gas-dynamic spraying. The combined coatings under study had a thickness of 60–350 μm. The work also obtained the dependences of the friction coefficients for coatings with different surface areas of the electric spark and copper components. The magnitude of the friction coefficient depends on the applied load. It was found that the minimum friction coefficient for coatings was in the range of 0.077–0.142. The pressure values for the appearance of plastic contact for various types of experimental coatings are in the range of 178–241.5 MPa. Coatings with a higher percentage of copper on the surface, other things being equal, have a lower temperature in the friction zone. Reducing the area of the electric spark component from 78 to 4% makes it possible to reduce the temperature in the friction zone by 2.5 times. At a relative sliding speed of 55 m/min, a self-lubricating effect is observed. The quasi-liquid form of copper is fragmentarily transferred into the roughness cavities of the electric spark component. As a result of the research, combined antifriction coatings with a surface area of the electric spark component of less than 50% are recommended for use in friction units with contact pressure up to 240 MPa; in pairs with contact pressure below 170 MPa, coatings with an area of the electric spark component of 4–30%, having low coefficient of friction.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"45 3","pages":"172 - 178"},"PeriodicalIF":0.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing the Efficiency of Finishing of Quartz Crystal Elements through Controlling the Structural, Mechanical, and Rheological Characteristics of Abrasive Suspensions 通过控制研磨悬浮液的结构、机械和流变特性提高石英晶体元件的精加工效率
IF 0.5 4区 工程技术 Q4 ENGINEERING, MECHANICAL Pub Date : 2024-11-08 DOI: 10.3103/S1068366624700259
V. M. Shumyacher, S. A. Kryukov, A. L. Khudolei

One option for solving the scientific and applied problem of increasing the efficiency of finishing quartz crystal elements (QCEs) through controlling the structural, mechanical, and rheological characteristics of abrasive suspensions is presented. The finishing technology for manufacturing QCEs is flat finishing on machines using an abrasive suspension of fine Al2O3 particles. The dispersion medium in the abrasive suspension during finishing of QCEs ensures uniform distribution of abrasive grains over the lap, minimizes the sticking of separating quartz particles, and facilitates its dispersion. Control of the structural and mechanical characteristics of the abrasive suspension is achieved by introducing into the dispersion medium (water) stabilizers such as protective colloids, which prevent the approach of abrasive particles and the destruction of quartz. The problem of QCE finishing has been solved by the authors for the first time ever.

本文介绍了通过控制研磨悬浮液的结构、机械和流变特性来提高石英晶体元件(QCE)精加工效率这一科学和应用问题的一种解决方案。制造 QCE 的精加工技术是在使用细小 Al2O3 颗粒研磨悬浮液的机器上进行平面精加工。在精加工 QCE 时,研磨悬浮液中的分散介质可确保研磨颗粒在搭接面上均匀分布,最大程度地减少分离石英颗粒的粘连,并促进其分散。通过在分散介质(水)中引入稳定剂(如保护胶体)来控制磨料悬浮液的结构和机械特性,从而防止磨料颗粒靠近和破坏石英。作者首次解决了 QCE 抛光问题。
{"title":"Increasing the Efficiency of Finishing of Quartz Crystal Elements through Controlling the Structural, Mechanical, and Rheological Characteristics of Abrasive Suspensions","authors":"V. M. Shumyacher,&nbsp;S. A. Kryukov,&nbsp;A. L. Khudolei","doi":"10.3103/S1068366624700259","DOIUrl":"10.3103/S1068366624700259","url":null,"abstract":"<p>One option for solving the scientific and applied problem of increasing the efficiency of finishing quartz crystal elements (QCEs) through controlling the structural, mechanical, and rheological characteristics of abrasive suspensions is presented. The finishing technology for manufacturing QCEs is flat finishing on machines using an abrasive suspension of fine Al<sub>2</sub>O<sub>3</sub> particles. The dispersion medium in the abrasive suspension during finishing of QCEs ensures uniform distribution of abrasive grains over the lap, minimizes the sticking of separating quartz particles, and facilitates its dispersion. Control of the structural and mechanical characteristics of the abrasive suspension is achieved by introducing into the dispersion medium (water) stabilizers such as protective colloids, which prevent the approach of abrasive particles and the destruction of quartz. The problem of QCE finishing has been solved by the authors for the first time ever.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"45 3","pages":"167 - 171"},"PeriodicalIF":0.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Ultrafine Additives of Intermetallides on the Structure, Mechanical, and Tribotechnical Properties of Sintered Tin Bronze 金属间化合物超细添加剂对烧结锡青铜的结构、机械和摩擦技术性能的影响
IF 0.5 4区 工程技术 Q4 ENGINEERING, MECHANICAL Pub Date : 2024-11-08 DOI: 10.3103/S106836662470020X
L. N. Dyachkova, A. I. Letsko

The results of a study of the influence of the introduction of powders of intermetallic compounds of various compositions obtained by self-propagating high-temperature synthesis (SHS) with preliminary mechanical activation on the structure, mechanical, and tribological properties of sintered bronze are presented. It was found that the introduction of 0.2–0.5 wt % of nickel and titanium aluminides, both single-phase and two-phase, leads to an increase in the density and strength of sintered bronze; maximum strength is achieved with the introduction of 0.2 wt % aluminides. The dependence of the hardness of powder bronze on the amount and composition of the intermetallic compound differs from the dependence of strength; with the introduction of single-phase intermetallic compounds, the hardness increases with increasing additive content, and with two-phase intermetallic compounds it decreases. It has been shown that the introduction of aluminides ensures a refinement of the structure of the bronze during sintering, and at an additive content of 1 wt %, an increase in the amount of eutectoid (α + δ). The introduction of aluminides also has a positive effect on the tribological properties of sintered bronze. With the introduction of 0.5 wt % two-phase nickel aluminide and 0.2 wt % single-phase titanium aluminide, the seizure pressure and wear resistance increase by 2.8 times and 3.5 times, respectively. Adding 0.5 wt % of single-phase nickel, titanium, and iron aluminides allows reducing the friction coefficient to 0.009–0.011, and two-phase iron aluminide to 0.005. The introduction of iron aluminides most effectively increases the tribological properties of sintered bronze, so the seizure pressure increases to 10 MPa and wear resistance by almost 10 times. Aluminides help reduce the relief of the friction surface during adhesive wear of sintered bronze and the formation of microlacunae, which are additional reservoirs for lubrication. The smoothest friction surface and a higher content of microlacunae are observed in samples made of powder bronze with the addition of single-phase iron aluminide.

研究结果介绍了通过自蔓延高温合成(SHS)获得的各种成分的金属间化合物粉末的引入和初步机械活化对烧结青铜的结构、机械和摩擦学特性的影响。研究发现,引入 0.2-0.5 wt % 的镍和钛铝化物(包括单相和双相)会导致烧结青铜的密度和强度增加;引入 0.2 wt % 的铝化物会达到最大强度。粉末青铜的硬度与金属间化合物的数量和组成的关系与强度的关系不同;在引入单相金属间化合物时,硬度会随着添加剂含量的增加而增加,而在引入两相金属间化合物时,硬度则会降低。研究表明,引入铝化物可确保青铜在烧结过程中结构细化,当添加剂含量为 1 wt % 时,共晶量(α + δ)会增加。铝化物的引入对烧结青铜的摩擦学特性也有积极影响。引入 0.5 wt % 的两相铝化镍和 0.2 wt % 的单相铝化钛后,咬合压力和耐磨性分别提高了 2.8 倍和 3.5 倍。添加 0.5 wt % 的单相镍、钛和铁铝化物可将摩擦系数降至 0.009-0.011,将两相铁铝化物降至 0.005。铁铝化物的引入最有效地提高了烧结青铜的摩擦学性能,使其抗压强度提高到 10 兆帕,耐磨性提高了近 10 倍。在烧结青铜的粘着磨损过程中,铝化物有助于减少摩擦表面的凸起,并有助于形成微腔,而微腔是润滑的附加贮槽。在添加了单相铁铝化物的粉末青铜样品中,可以观察到最平滑的摩擦表面和更高含量的微漆膜。
{"title":"Influence of Ultrafine Additives of Intermetallides on the Structure, Mechanical, and Tribotechnical Properties of Sintered Tin Bronze","authors":"L. N. Dyachkova,&nbsp;A. I. Letsko","doi":"10.3103/S106836662470020X","DOIUrl":"10.3103/S106836662470020X","url":null,"abstract":"<p>The results of a study of the influence of the introduction of powders of intermetallic compounds of various compositions obtained by self-propagating high-temperature synthesis (SHS) with preliminary mechanical activation on the structure, mechanical, and tribological properties of sintered bronze are presented. It was found that the introduction of 0.2–0.5 wt % of nickel and titanium aluminides, both single-phase and two-phase, leads to an increase in the density and strength of sintered bronze; maximum strength is achieved with the introduction of 0.2 wt % aluminides. The dependence of the hardness of powder bronze on the amount and composition of the intermetallic compound differs from the dependence of strength; with the introduction of single-phase intermetallic compounds, the hardness increases with increasing additive content, and with two-phase intermetallic compounds it decreases. It has been shown that the introduction of aluminides ensures a refinement of the structure of the bronze during sintering, and at an additive content of 1 wt %, an increase in the amount of eutectoid (α + δ). The introduction of aluminides also has a positive effect on the tribological properties of sintered bronze. With the introduction of 0.5 wt % two-phase nickel aluminide and 0.2 wt % single-phase titanium aluminide, the seizure pressure and wear resistance increase by 2.8 times and 3.5 times, respectively. Adding 0.5 wt % of single-phase nickel, titanium, and iron aluminides allows reducing the friction coefficient to 0.009–0.011, and two-phase iron aluminide to 0.005. The introduction of iron aluminides most effectively increases the tribological properties of sintered bronze, so the seizure pressure increases to 10 MPa and wear resistance by almost 10 times. Aluminides help reduce the relief of the friction surface during adhesive wear of sintered bronze and the formation of microlacunae, which are additional reservoirs for lubrication. The smoothest friction surface and a higher content of microlacunae are observed in samples made of powder bronze with the addition of single-phase iron aluminide.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"45 3","pages":"132 - 139"},"PeriodicalIF":0.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiospectroscopic Study of Used Marine Oils 废海洋油的辐射光谱研究
IF 0.5 4区 工程技术 Q4 ENGINEERING, MECHANICAL Pub Date : 2024-08-17 DOI: 10.3103/S1068366624700120
N. Ya. Sinyavsky, I. G. Mershiev

This work investigated the hydrocarbon degradation and depletion of the anti-wear additive zinc dialkyldithiophosphate (ZDDP) in several used marine motor oils using high-resolution nuclear magnetic resonance (NMR). The article presents research results showing that during engine operation several characteristics of motor oil change: degree of aromaticity, ratio of methyl/methylene groups, and composition of phosphorus-containing additives. The possibility of determining oil using the NMR spectrum lines of antiwear additives has been demonstrated. For anti-wear additives containing phosphorus, such as ZDDP and molybdenum dialkyldithiophosphate (MoDDP), 31P NMR has been found to provide both depletion rates and insight into the wear mechanism of the additives. The high efficiency of using the high-field NMR spectroscopy method for studying fresh and used marine motor oils has been demonstrated. 1H, 13C, and 31P NMR studies show the presence of changes in motor oil caused by the accumulation of products of its decomposition, degradation, and decomposition of additives during engine operation. The ability of the NMR radiospectroscopy method to monitor additive depletion is analyzed, which is apparently one of the most difficult problems in used oil analysis. A characteristic feature of the NMR spectra of all used oils is line broadening caused by the presence of metal wear particles. It is characteristic that the broadening of the 13C NMR lines for waste oils is significantly less than the broadening in the NMR spectra of protons. In the 13C NMR spectrum of used oil, an increase in the intensity of the line from aromatic hydrocarbons is observed, i.e., as the degree of oil degradation increases, the content of aromatic compounds increases. The results of the study of fresh and used motor oils obtained in this work are new. They can be used to create a system for monitoring the quality of motor oils and for diagnosing engine malfunctions using used oil.

摘要--这项研究利用高分辨率核磁共振 (NMR) 对几种使用过的船用机油中抗磨添加剂二烷基二硫代磷酸锌 (ZDDP) 的碳氢化合物降解和损耗情况进行了调查。文章介绍的研究结果表明,在发动机运行过程中,机油的几个特性会发生变化:芳香度、甲基/亚甲基的比例以及含磷添加剂的成分。利用抗磨损添加剂的核磁共振谱线确定机油的可能性已经得到证实。对于含磷的抗磨损添加剂,如 ZDDP 和二烷基二硫代磷酸钼(MoDDP),31P NMR 既能提供损耗率,又能深入了解添加剂的磨损机理。使用高场核磁共振光谱方法研究新鲜和使用过的船用机油的高效性已得到证实。1H、13C 和 31P NMR 研究表明,机油中存在由其分解产物的积累、降解和发动机运行期间添加剂的分解引起的变化。分析了核磁共振辐射光谱法监测添加剂损耗的能力,这显然是废油分析中最难解决的问题之一。所有废油核磁共振光谱的一个特点是,由于存在金属磨损颗粒,光谱线会变宽。废油 13C NMR 线宽的特征是明显小于质子 NMR 光谱中的线宽。在废油的 13C NMR 光谱中,可以观察到来自芳香烃的谱线强度增加,即随着油品降解程度的增加,芳香族化合物的含量也会增加。这项工作对新机油和废机油的研究结果是全新的。这些结果可用来创建一个系统,用于监测机油质量和诊断使用过的机油造成的发动机故障。
{"title":"Radiospectroscopic Study of Used Marine Oils","authors":"N. Ya. Sinyavsky,&nbsp;I. G. Mershiev","doi":"10.3103/S1068366624700120","DOIUrl":"10.3103/S1068366624700120","url":null,"abstract":"<p>This work investigated the hydrocarbon degradation and depletion of the anti-wear additive zinc dialkyldithiophosphate (ZDDP) in several used marine motor oils using high-resolution nuclear magnetic resonance (NMR). The article presents research results showing that during engine operation several characteristics of motor oil change: degree of aromaticity, ratio of methyl/methylene groups, and composition of phosphorus-containing additives. The possibility of determining oil using the NMR spectrum lines of antiwear additives has been demonstrated. For anti-wear additives containing phosphorus, such as ZDDP and molybdenum dialkyldithiophosphate (MoDDP), <sup>31</sup>P NMR has been found to provide both depletion rates and insight into the wear mechanism of the additives. The high efficiency of using the high-field NMR spectroscopy method for studying fresh and used marine motor oils has been demonstrated. <sup>1</sup>H, <sup>13</sup>C, and <sup>31</sup>P NMR studies show the presence of changes in motor oil caused by the accumulation of products of its decomposition, degradation, and decomposition of additives during engine operation. The ability of the NMR radiospectroscopy method to monitor additive depletion is analyzed, which is apparently one of the most difficult problems in used oil analysis. A characteristic feature of the NMR spectra of all used oils is line broadening caused by the presence of metal wear particles. It is characteristic that the broadening of the <sup>13</sup>C NMR lines for waste oils is significantly less than the broadening in the NMR spectra of protons. In the <sup>13</sup>C NMR spectrum of used oil, an increase in the intensity of the line from aromatic hydrocarbons is observed, i.e., as the degree of oil degradation increases, the content of aromatic compounds increases. The results of the study of fresh and used motor oils obtained in this work are new. They can be used to create a system for monitoring the quality of motor oils and for diagnosing engine malfunctions using used oil.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"45 2","pages":"77 - 84"},"PeriodicalIF":0.5,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Friction and Wear
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1