{"title":"Application of a Web-based Tool for Quantitative Bias Analysis: The Example of Misclassification Due to Self-reported Body Mass Index.","authors":"Hailey R Banack, Samantha N Smith, Lisa M Bodnar","doi":"10.1097/EDE.0000000000001726","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We describe the use of Apisensr, a web-based application that can be used to implement quantitative bias analysis for misclassification, selection bias, and unmeasured confounding. We apply Apisensr using an example of exposure misclassification bias due to use of self-reported body mass index (BMI) to define obesity status in an analysis of the relationship between obesity and diabetes.</p><p><strong>Methods: </strong>We used publicly available data from the National Health and Nutrition Examination Survey. The analysis consisted of: (1) estimating bias parameter values (sensitivity, specificity, negative predictive value, and positive predictive value) for self-reported obesity by sex, age, and race-ethnicity compared to obesity defined by measured BMI, and (2) using Apisensr to adjust for exposure misclassification.</p><p><strong>Results: </strong>The discrepancy between self-reported and measured obesity varied by demographic group (sensitivity range: 75%-89%; specificity range: 91%-99%). Using Apisensr for quantitative bias analysis, there was a clear pattern in the results: the relationship between obesity and diabetes was underestimated using self-report in all age, sex, and race-ethnicity categories compared to measured obesity. For example, in non-Hispanic White men aged 40-59 years, prevalence odds ratios for diabetes were 3.06 (95% confidence inerval = 1.78, 5.30) using self-reported BMI and 4.11 (95% confidence interval = 2.56, 6.75) after bias analysis adjusting for misclassification.</p><p><strong>Conclusion: </strong>Apisensr is an easy-to-use, web-based Shiny app designed to facilitate quantitative bias analysis. Our results also provide estimates of bias parameter values that can be used by other researchers interested in examining obesity defined by self-reported BMI.</p>","PeriodicalId":11779,"journal":{"name":"Epidemiology","volume":" ","pages":"359-367"},"PeriodicalIF":4.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11022994/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/EDE.0000000000001726","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Background: We describe the use of Apisensr, a web-based application that can be used to implement quantitative bias analysis for misclassification, selection bias, and unmeasured confounding. We apply Apisensr using an example of exposure misclassification bias due to use of self-reported body mass index (BMI) to define obesity status in an analysis of the relationship between obesity and diabetes.
Methods: We used publicly available data from the National Health and Nutrition Examination Survey. The analysis consisted of: (1) estimating bias parameter values (sensitivity, specificity, negative predictive value, and positive predictive value) for self-reported obesity by sex, age, and race-ethnicity compared to obesity defined by measured BMI, and (2) using Apisensr to adjust for exposure misclassification.
Results: The discrepancy between self-reported and measured obesity varied by demographic group (sensitivity range: 75%-89%; specificity range: 91%-99%). Using Apisensr for quantitative bias analysis, there was a clear pattern in the results: the relationship between obesity and diabetes was underestimated using self-report in all age, sex, and race-ethnicity categories compared to measured obesity. For example, in non-Hispanic White men aged 40-59 years, prevalence odds ratios for diabetes were 3.06 (95% confidence inerval = 1.78, 5.30) using self-reported BMI and 4.11 (95% confidence interval = 2.56, 6.75) after bias analysis adjusting for misclassification.
Conclusion: Apisensr is an easy-to-use, web-based Shiny app designed to facilitate quantitative bias analysis. Our results also provide estimates of bias parameter values that can be used by other researchers interested in examining obesity defined by self-reported BMI.
期刊介绍:
Epidemiology publishes original research from all fields of epidemiology. The journal also welcomes review articles and meta-analyses, novel hypotheses, descriptions and applications of new methods, and discussions of research theory or public health policy. We give special consideration to papers from developing countries.