Proteomics of the heart.

IF 29.9 1区 医学 Q1 PHYSIOLOGY Physiological reviews Pub Date : 2024-07-01 Epub Date: 2024-02-01 DOI:10.1152/physrev.00026.2023
Oleg A Karpov, Aleksandr Stotland, Koen Raedschelders, Blandine Chazarin, Lizhuo Ai, Christopher I Murray, Jennifer E Van Eyk
{"title":"Proteomics of the heart.","authors":"Oleg A Karpov, Aleksandr Stotland, Koen Raedschelders, Blandine Chazarin, Lizhuo Ai, Christopher I Murray, Jennifer E Van Eyk","doi":"10.1152/physrev.00026.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Mass spectrometry-based proteomics is a sophisticated identification tool specializing in portraying protein dynamics at a molecular level. Proteomics provides biologists with a snapshot of context-dependent protein and proteoform expression, structural conformations, dynamic turnover, and protein-protein interactions. Cardiac proteomics can offer a broader and deeper understanding of the molecular mechanisms that underscore cardiovascular disease, and it is foundational to the development of future therapeutic interventions. This review encapsulates the evolution, current technologies, and future perspectives of proteomic-based mass spectrometry as it applies to the study of the heart. Key technological advancements have allowed researchers to study proteomes at a single-cell level and employ robot-assisted automation systems for enhanced sample preparation techniques, and the increase in fidelity of the mass spectrometers has allowed for the unambiguous identification of numerous dynamic posttranslational modifications. Animal models of cardiovascular disease, ranging from early animal experiments to current sophisticated models of heart failure with preserved ejection fraction, have provided the tools to study a challenging organ in the laboratory. Further technological development will pave the way for the implementation of proteomics even closer within the clinical setting, allowing not only scientists but also patients to benefit from an understanding of protein interplay as it relates to cardiac disease physiology.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"931-982"},"PeriodicalIF":29.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381016/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physrev.00026.2023","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mass spectrometry-based proteomics is a sophisticated identification tool specializing in portraying protein dynamics at a molecular level. Proteomics provides biologists with a snapshot of context-dependent protein and proteoform expression, structural conformations, dynamic turnover, and protein-protein interactions. Cardiac proteomics can offer a broader and deeper understanding of the molecular mechanisms that underscore cardiovascular disease, and it is foundational to the development of future therapeutic interventions. This review encapsulates the evolution, current technologies, and future perspectives of proteomic-based mass spectrometry as it applies to the study of the heart. Key technological advancements have allowed researchers to study proteomes at a single-cell level and employ robot-assisted automation systems for enhanced sample preparation techniques, and the increase in fidelity of the mass spectrometers has allowed for the unambiguous identification of numerous dynamic posttranslational modifications. Animal models of cardiovascular disease, ranging from early animal experiments to current sophisticated models of heart failure with preserved ejection fraction, have provided the tools to study a challenging organ in the laboratory. Further technological development will pave the way for the implementation of proteomics even closer within the clinical setting, allowing not only scientists but also patients to benefit from an understanding of protein interplay as it relates to cardiac disease physiology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心脏蛋白质组学
基于质谱的蛋白质组学是一种复杂的鉴定工具,专门用于在分子水平上描述蛋白质的动态变化。蛋白质组学为生物学家提供了与上下文相关的蛋白质表达、异构构象、动态周转信息以及蛋白质与蛋白质之间直接相互作用的数据。心脏蛋白质组学让研究人员和临床医生对心血管疾病的分子机制有了更深入的了解,并为未来治疗干预措施的开发奠定了基础。本综述概述了基于蛋白质组学的质谱技术在心脏研究中的发展、现有技术和未来展望。关键技术的进步使研究人员能够在单细胞水平上研究蛋白质组,采用机器人辅助的自动化系统来增强样品制备技术,质谱仪保真度的提高使众多动态翻译后修饰(PTM)得以明确鉴定。从早期的动物实验到目前复杂的射血分数保留型心力衰竭(HFpEF)动物模型,心血管疾病动物模型为在实验室研究具有挑战性的器官提供了工具。进一步的技术发展将为蛋白质组学在临床环境中的应用铺平道路,使科学家和患者都能从了解蛋白质相互作用与心脏疾病生理学的关系中获益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiological reviews
Physiological reviews 医学-生理学
CiteScore
56.50
自引率
0.90%
发文量
53
期刊介绍: Physiological Reviews is a highly regarded journal that covers timely issues in physiological and biomedical sciences. It is targeted towards physiologists, neuroscientists, cell biologists, biophysicists, and clinicians with a special interest in pathophysiology. The journal has an ISSN of 0031-9333 for print and 1522-1210 for online versions. It has a unique publishing frequency where articles are published individually, but regular quarterly issues are also released in January, April, July, and October. The articles in this journal provide state-of-the-art and comprehensive coverage of various topics. They are valuable for teaching and research purposes as they offer interesting and clearly written updates on important new developments. Physiological Reviews holds a prominent position in the scientific community and consistently ranks as the most impactful journal in the field of physiology.
期刊最新文献
Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. The calculating brain. Pathophysiology of syncope: current concepts and their development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1