BORIS/CTCFL epigenetically reprograms clustered CTCF binding sites into alternative transcriptional start sites.

IF 12.3 1区 生物学 Q1 Agricultural and Biological Sciences Genome Biology Pub Date : 2024-01-31 DOI:10.1186/s13059-024-03175-0
Elena M Pugacheva, Dharmendra Nath Bhatt, Samuel Rivero-Hinojosa, Md Tajmul, Liron Fedida, Emma Price, Yon Ji, Dmitri Loukinov, Alexander V Strunnikov, Bing Ren, Victor V Lobanenkov
{"title":"BORIS/CTCFL epigenetically reprograms clustered CTCF binding sites into alternative transcriptional start sites.","authors":"Elena M Pugacheva, Dharmendra Nath Bhatt, Samuel Rivero-Hinojosa, Md Tajmul, Liron Fedida, Emma Price, Yon Ji, Dmitri Loukinov, Alexander V Strunnikov, Bing Ren, Victor V Lobanenkov","doi":"10.1186/s13059-024-03175-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pervasive usage of alternative promoters leads to the deregulation of gene expression in carcinogenesis and may drive the emergence of new genes in spermatogenesis. However, little is known regarding the mechanisms underpinning the activation of alternative promoters.</p><p><strong>Results: </strong>Here we describe how alternative cancer-testis-specific transcription is activated. We show that intergenic and intronic CTCF binding sites, which are transcriptionally inert in normal somatic cells, could be epigenetically reprogrammed into active de novo promoters in germ and cancer cells. BORIS/CTCFL, the testis-specific paralog of the ubiquitously expressed CTCF, triggers the epigenetic reprogramming of CTCF sites into units of active transcription. BORIS binding initiates the recruitment of the chromatin remodeling factor, SRCAP, followed by the replacement of H2A histone with H2A.Z, resulting in a more relaxed chromatin state in the nucleosomes flanking the CTCF binding sites. The relaxation of chromatin around CTCF binding sites facilitates the recruitment of multiple additional transcription factors, thereby activating transcription from a given binding site. We demonstrate that the epigenetically reprogrammed CTCF binding sites can drive the expression of cancer-testis genes, long noncoding RNAs, retro-pseudogenes, and dormant transposable elements.</p><p><strong>Conclusions: </strong>Thus, BORIS functions as a transcription factor that epigenetically reprograms clustered CTCF binding sites into transcriptional start sites, promoting transcription from alternative promoters in both germ cells and cancer cells.</p>","PeriodicalId":48922,"journal":{"name":"Genome Biology","volume":"25 1","pages":"40"},"PeriodicalIF":12.3000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10832218/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03175-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Pervasive usage of alternative promoters leads to the deregulation of gene expression in carcinogenesis and may drive the emergence of new genes in spermatogenesis. However, little is known regarding the mechanisms underpinning the activation of alternative promoters.

Results: Here we describe how alternative cancer-testis-specific transcription is activated. We show that intergenic and intronic CTCF binding sites, which are transcriptionally inert in normal somatic cells, could be epigenetically reprogrammed into active de novo promoters in germ and cancer cells. BORIS/CTCFL, the testis-specific paralog of the ubiquitously expressed CTCF, triggers the epigenetic reprogramming of CTCF sites into units of active transcription. BORIS binding initiates the recruitment of the chromatin remodeling factor, SRCAP, followed by the replacement of H2A histone with H2A.Z, resulting in a more relaxed chromatin state in the nucleosomes flanking the CTCF binding sites. The relaxation of chromatin around CTCF binding sites facilitates the recruitment of multiple additional transcription factors, thereby activating transcription from a given binding site. We demonstrate that the epigenetically reprogrammed CTCF binding sites can drive the expression of cancer-testis genes, long noncoding RNAs, retro-pseudogenes, and dormant transposable elements.

Conclusions: Thus, BORIS functions as a transcription factor that epigenetically reprograms clustered CTCF binding sites into transcriptional start sites, promoting transcription from alternative promoters in both germ cells and cancer cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BORIS/CTCFL 从表观遗传学角度将成簇的 CTCF 结合位点重新编程为替代转录起始位点。
背景:替代启动子的广泛使用导致致癌过程中基因表达的失调,并可能推动精子发生过程中新基因的出现。然而,人们对替代启动子的激活机制知之甚少:结果:我们在这里描述了癌症睾丸特异性替代转录是如何被激活的。结果:我们在这里描述了癌症睾丸特异性转录是如何被激活的。我们发现,在正常体细胞中转录惰性的基因间和基因内 CTCF 结合位点,在生殖细胞和癌细胞中可被表观遗传学重编程为活跃的新启动子。BORIS/CTCFL是普遍表达的CTCF的睾丸特异性旁系亲属,它能触发CTCF位点的表观遗传重编程,使其成为活跃的转录单位。BORIS 的结合启动了染色质重塑因子 SRCAP 的招募,随后 H2A 组蛋白被 H2A.Z 代替,导致 CTCF 结合位点两侧核小体的染色质状态更加松弛。CTCF 结合位点周围染色质的松弛有利于招募多个额外的转录因子,从而激活特定结合位点的转录。我们证明,经表观遗传学重编程的 CTCF 结合位点可驱动癌试管基因、长非编码 RNA、逆转录伪基因和休眠转座元件的表达:因此,BORIS 是一种转录因子,它能将成簇的 CTCF 结合位点表观遗传重编程为转录起始位点,促进生殖细胞和癌细胞中替代启动子的转录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome Biology
Genome Biology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
25.50
自引率
3.30%
发文量
0
审稿时长
14 weeks
期刊介绍: Genome Biology is a leading research journal that focuses on the study of biology and biomedicine from a genomic and post-genomic standpoint. The journal consistently publishes outstanding research across various areas within these fields. With an impressive impact factor of 12.3 (2022), Genome Biology has earned its place as the 3rd highest-ranked research journal in the Genetics and Heredity category, according to Thomson Reuters. Additionally, it is ranked 2nd among research journals in the Biotechnology and Applied Microbiology category. It is important to note that Genome Biology is the top-ranking open access journal in this category. In summary, Genome Biology sets a high standard for scientific publications in the field, showcasing cutting-edge research and earning recognition among its peers.
期刊最新文献
Genetic-by-age interaction analyses on complex traits in UK Biobank and their potential to identify effects on longitudinal trait change. Cohesin distribution alone predicts chromatin organization in yeast via conserved-current loop extrusion. DeepKINET: a deep generative model for estimating single-cell RNA splicing and degradation rates. Seqrutinator: scrutiny of large protein superfamily sequence datasets for the identification and elimination of non-functional homologues. Systemic interindividual DNA methylation variants in cattle share major hallmarks with those in humans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1