Francis Parenteau, Veronica Furno Puglia, Mary Roberts, Alain Steve Comtois, Andreas Bergdahl
{"title":"Cranberry supplementation improves physiological markers of performance in trained runners.","authors":"Francis Parenteau, Veronica Furno Puglia, Mary Roberts, Alain Steve Comtois, Andreas Bergdahl","doi":"10.20463/pan.2023.0032","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Cranberries have the highest polyphenol and antioxidant capacity among fruits and vegetables and may protect against exercise-induced free radical production, consequently improving performance. This study aimed to investigate the effect of polyphenol-rich cranberry extract (CE) on time-trial performance and lactate response following exercise.</p><p><strong>Methods: </strong>A total of 14 trained runners were tested at i) baseline, ii) 2 h following an acute CE dose (0.7 g/kg of body mass), and iii) 4 weeks after daily supplement consumption (0.3 g/kg of body mass). At each time point, runners performed a 1500-m race followed by a 400-m race where the live vastus lateralis oxygenation changes were determined by near-infrared spectroscopy and blood lactate was measured at rest and 1 and 3 min after each trial. The Shapiro-Wilk test and repeated-measures analysis of variance were used to establish significance (P <0.05).</p><p><strong>Results: </strong>Cranberry supplementation over 28 d improved aerobic performance during the 1500-m time trial, whereas the acute dose had no effect. More specifically, muscle reoxygenation rates were significantly faster after 28 d compared to baseline (P = 0.04; η² = 0.29), and a trend towards slower deoxygenation rate was observed (P = 0.13; η² = 0.20). Chronic CE consumption also buffered the post-exercise lactate response for the 400-m race (P = 0.01; η² = 0.27), while no effects were seen for the longer race.</p><p><strong>Conclusion: </strong>Our results suggest that cranberry supplementation may have ergogenic effects, as it improves physiological markers of performance during short- and long-distance running.</p>","PeriodicalId":74444,"journal":{"name":"Physical activity and nutrition","volume":"27 4","pages":"8-14"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10844722/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical activity and nutrition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20463/pan.2023.0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Cranberries have the highest polyphenol and antioxidant capacity among fruits and vegetables and may protect against exercise-induced free radical production, consequently improving performance. This study aimed to investigate the effect of polyphenol-rich cranberry extract (CE) on time-trial performance and lactate response following exercise.
Methods: A total of 14 trained runners were tested at i) baseline, ii) 2 h following an acute CE dose (0.7 g/kg of body mass), and iii) 4 weeks after daily supplement consumption (0.3 g/kg of body mass). At each time point, runners performed a 1500-m race followed by a 400-m race where the live vastus lateralis oxygenation changes were determined by near-infrared spectroscopy and blood lactate was measured at rest and 1 and 3 min after each trial. The Shapiro-Wilk test and repeated-measures analysis of variance were used to establish significance (P <0.05).
Results: Cranberry supplementation over 28 d improved aerobic performance during the 1500-m time trial, whereas the acute dose had no effect. More specifically, muscle reoxygenation rates were significantly faster after 28 d compared to baseline (P = 0.04; η² = 0.29), and a trend towards slower deoxygenation rate was observed (P = 0.13; η² = 0.20). Chronic CE consumption also buffered the post-exercise lactate response for the 400-m race (P = 0.01; η² = 0.27), while no effects were seen for the longer race.
Conclusion: Our results suggest that cranberry supplementation may have ergogenic effects, as it improves physiological markers of performance during short- and long-distance running.