{"title":"A modified stochastic finite-fault method for estimating strong ground motion: Validation and application","authors":"Xinjuan He, Hua Pan","doi":"10.1016/j.eqs.2023.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>We developed a modified stochastic finite-fault method for estimating strong ground motions. An adjustment to the dynamic corner frequency was introduced, which accounted for the effect of the location of the subfault relative to the hypocenter and rupture propagation direction, to account for the influence of the rupture propagation direction on the subfault dynamic corner frequency. By comparing the peak ground acceleration (PGA), pseudo-absolute response spectra acceleration (PSA, damping ratio of 5%), and duration, the results of the modified and existing methods were compared, demonstrating that our proposed adjustment to the dynamic corner frequency can accurately reflect the rupture directivity effect. We applied our modified method to simulate near-field strong motions within 150 km of the 2008 <em>M</em><sub>W</sub>7.9 Wenchuan earthquake rupture. Our modified method performed well over a broad period range, particularly at 0.04–4 s. The total deviations of the stochastic finite-fault method (EXSIM) and the modified EXSIM were 0.1676 and 0.1494, respectively. The modified method can effectively account for the influence of the rupture propagation direction and provide more realistic ground motion estimations for earthquake disaster mitigation.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 1","pages":"Pages 36-50"},"PeriodicalIF":1.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451923000575/pdfft?md5=85701b6a41e901723ca69c58be7207f0&pid=1-s2.0-S1674451923000575-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451923000575","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
We developed a modified stochastic finite-fault method for estimating strong ground motions. An adjustment to the dynamic corner frequency was introduced, which accounted for the effect of the location of the subfault relative to the hypocenter and rupture propagation direction, to account for the influence of the rupture propagation direction on the subfault dynamic corner frequency. By comparing the peak ground acceleration (PGA), pseudo-absolute response spectra acceleration (PSA, damping ratio of 5%), and duration, the results of the modified and existing methods were compared, demonstrating that our proposed adjustment to the dynamic corner frequency can accurately reflect the rupture directivity effect. We applied our modified method to simulate near-field strong motions within 150 km of the 2008 MW7.9 Wenchuan earthquake rupture. Our modified method performed well over a broad period range, particularly at 0.04–4 s. The total deviations of the stochastic finite-fault method (EXSIM) and the modified EXSIM were 0.1676 and 0.1494, respectively. The modified method can effectively account for the influence of the rupture propagation direction and provide more realistic ground motion estimations for earthquake disaster mitigation.
期刊介绍:
Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration.
The topics include, but not limited to, the following
● Seismic sources of all kinds.
● Earth structure at all scales.
● Seismotectonics.
● New methods and theoretical seismology.
● Strong ground motion.
● Seismic phenomena of all kinds.
● Seismic hazards, earthquake forecasting and prediction.
● Seismic instrumentation.
● Significant recent or past seismic events.
● Documentation of recent seismic events or important observations.
● Descriptions of field deployments, new methods, and available software tools.
The types of manuscripts include the following. There is no length requirement, except for the Short Notes.
【Articles】 Original contributions that have not been published elsewhere.
【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages.
【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications.
【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals.
【Toolboxes】 Descriptions of novel numerical methods and associated computer codes.
【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models).
【Opinions】Views on important topics and future directions in earthquake science.
【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.