A Localized Primal-Dual Method for Centralized/Decentralized Federated Learning Robust to Data Heterogeneity

IF 3 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Signal and Information Processing over Networks Pub Date : 2023-12-25 DOI:10.1109/TSIPN.2023.3343616
Iifan Tyou;Tomoya Murata;Takumi Fukami;Yuki Takezawa;Kenta Niwa
{"title":"A Localized Primal-Dual Method for Centralized/Decentralized Federated Learning Robust to Data Heterogeneity","authors":"Iifan Tyou;Tomoya Murata;Takumi Fukami;Yuki Takezawa;Kenta Niwa","doi":"10.1109/TSIPN.2023.3343616","DOIUrl":null,"url":null,"abstract":"Generalized Edge-Consensus Learning (G-ECL) is a primal-dual method to solve loss-sum minimization problems. We propose Local Generalized Edge-Consensus Learning (Local G-ECL) as an extension of previous G-ECL, aiming to be a decentralized/centralized FL algorithm robust to heterogeneous data sets with a large number of local updates. Our contributions are as follows: (C1) success in theoretical gradient norm convergence analysis nearly independently of data heterogeneity, and (C2) equivalency proof between our primal-dual Local G-ECL and a pure primal Stochastic Controlled Averaging (SCAFFOLD) algorithm in centralized settings, where the difference in the initial local model for each round is ignored. Numerical experiments using image classification tests validated that Local G-ECL is robust to heterogeneous data with a large number of local updates.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"10 ","pages":"94-107"},"PeriodicalIF":3.0000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10373878","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10373878/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Generalized Edge-Consensus Learning (G-ECL) is a primal-dual method to solve loss-sum minimization problems. We propose Local Generalized Edge-Consensus Learning (Local G-ECL) as an extension of previous G-ECL, aiming to be a decentralized/centralized FL algorithm robust to heterogeneous data sets with a large number of local updates. Our contributions are as follows: (C1) success in theoretical gradient norm convergence analysis nearly independently of data heterogeneity, and (C2) equivalency proof between our primal-dual Local G-ECL and a pure primal Stochastic Controlled Averaging (SCAFFOLD) algorithm in centralized settings, where the difference in the initial local model for each round is ignored. Numerical experiments using image classification tests validated that Local G-ECL is robust to heterogeneous data with a large number of local updates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对数据异质性的集中/分散联合学习的本地化原点-二元方法
广义边缘共识学习(G-ECL)是一种求解损失和最小化问题的基本二元方法。我们提出了本地广义边缘共识学习(Local G-ECL),作为之前 G-ECL 的扩展,旨在成为一种分散/集中 FL 算法,对具有大量本地更新的异构数据集具有鲁棒性。我们的贡献如下(C1) 在理论梯度规范收敛分析方面取得成功,几乎不受数据异质性的影响;(C2) 证明了我们的原始双本地 G-ECL 算法与集中式设置下的纯原始随机控制平均(SCAFFOLD)算法之间的等价性,其中忽略了每轮初始本地模型的差异。使用图像分类测试进行的数值实验验证了本地 G-ECL 对具有大量本地更新的异构数据的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Signal and Information Processing over Networks
IEEE Transactions on Signal and Information Processing over Networks Computer Science-Computer Networks and Communications
CiteScore
5.80
自引率
12.50%
发文量
56
期刊介绍: The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.
期刊最新文献
Label Guided Graph Optimized Convolutional Network for Semi-Supervised Learning Event-Triggered Data-Driven Distributed LFC Using Controller-Dynamic-Linearization Method Robust Time-Varying Graph Signal Recovery for Dynamic Physical Sensor Network Data A Fixed-Time Convergent Distributed Algorithm for Time-Varying Optimal Resource Allocation Problem Memory-Enhanced Distributed Accelerated Algorithms for Coordinated Linear Computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1