Valeria Banica, Georg Maierhofer, Katharina Schratz
{"title":"Numerical Integration of Schrödinger Maps via the Hasimoto Transform","authors":"Valeria Banica, Georg Maierhofer, Katharina Schratz","doi":"10.1137/22m1531555","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 1, Page 322-352, February 2024. <br/> Abstract. We introduce a numerical approach to computing the Schrödinger map (SM) based on the Hasimoto transform which relates the SM flow to a cubic nonlinear Schrödinger (NLS) equation. In exploiting this nonlinear transform we are able to introduce the first fully explicit unconditionally stable symmetric integrators for the SM equation. Our approach consists of two parts: an integration of the NLS equation followed by the numerical evaluation of the Hasimoto transform. Motivated by the desire to study rough solutions to the SM equation, we also introduce a new symmetric low-regularity integrator for the NLS equation. This is combined with our novel fast low-regularity Hasimoto (FLowRH) transform, based on a tailored analysis of the resonance structures in the Magnus expansion and a fast realization based on block-Toeplitz partitions, to yield an efficient low-regularity integrator for the SM equation. This scheme in particular allows us to obtain approximations to the SM in a more general regime (i.e., under lower-regularity assumptions) than previously proposed methods. The favorable properties of our methods are exhibited both in theoretical convergence analysis and in numerical experiments.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"121 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1531555","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Numerical Analysis, Volume 62, Issue 1, Page 322-352, February 2024. Abstract. We introduce a numerical approach to computing the Schrödinger map (SM) based on the Hasimoto transform which relates the SM flow to a cubic nonlinear Schrödinger (NLS) equation. In exploiting this nonlinear transform we are able to introduce the first fully explicit unconditionally stable symmetric integrators for the SM equation. Our approach consists of two parts: an integration of the NLS equation followed by the numerical evaluation of the Hasimoto transform. Motivated by the desire to study rough solutions to the SM equation, we also introduce a new symmetric low-regularity integrator for the NLS equation. This is combined with our novel fast low-regularity Hasimoto (FLowRH) transform, based on a tailored analysis of the resonance structures in the Magnus expansion and a fast realization based on block-Toeplitz partitions, to yield an efficient low-regularity integrator for the SM equation. This scheme in particular allows us to obtain approximations to the SM in a more general regime (i.e., under lower-regularity assumptions) than previously proposed methods. The favorable properties of our methods are exhibited both in theoretical convergence analysis and in numerical experiments.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.