Julian Braun, Christoph Ortner, Yangshuai Wang, Lei Zhang
{"title":"Higher-Order Far-Field Boundary Conditions for Crystalline Defects","authors":"Julian Braun, Christoph Ortner, Yangshuai Wang, Lei Zhang","doi":"10.1137/24m165836x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 520-541, April 2025. <br/> Abstract. Crystalline materials exhibit long-range elastic fields due to the presence of defects, leading to significant domain size effects in atomistic simulations. A rigorous far-field expansion of these long-range fields identifies low-rank structure in the form of a sum of discrete multipole terms and continuum predictors [J. Braun, T. Hudson, and C. Ortner, Arch. Ration. Mech. Anal., 245 (2022), pp. 1437–1490]. We propose a novel numerical scheme that exploits this low-rank structure to accelerate material defect simulations by minimizing the domain size effects. Our approach iteratively improves the boundary condition, systematically following the asymptotic expansion of the far field. We provide both rigorous error estimates for the method and a range of empirical numerical tests to assess its convergence and robustness.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"18 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m165836x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 520-541, April 2025. Abstract. Crystalline materials exhibit long-range elastic fields due to the presence of defects, leading to significant domain size effects in atomistic simulations. A rigorous far-field expansion of these long-range fields identifies low-rank structure in the form of a sum of discrete multipole terms and continuum predictors [J. Braun, T. Hudson, and C. Ortner, Arch. Ration. Mech. Anal., 245 (2022), pp. 1437–1490]. We propose a novel numerical scheme that exploits this low-rank structure to accelerate material defect simulations by minimizing the domain size effects. Our approach iteratively improves the boundary condition, systematically following the asymptotic expansion of the far field. We provide both rigorous error estimates for the method and a range of empirical numerical tests to assess its convergence and robustness.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.