M-LSM: An Improved Multi-Liquid State Machine for Event-Based Vision Recognition

IF 1.2 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Computer Science and Technology Pub Date : 2023-11-30 DOI:10.1007/s11390-021-1326-8
Lei Wang, Sha-Sha Guo, Lian-Hua Qu, Shuo Tian, Wei-Xia Xu
{"title":"M-LSM: An Improved Multi-Liquid State Machine for Event-Based Vision Recognition","authors":"Lei Wang, Sha-Sha Guo, Lian-Hua Qu, Shuo Tian, Wei-Xia Xu","doi":"10.1007/s11390-021-1326-8","DOIUrl":null,"url":null,"abstract":"<p>Event-based computation has recently gained increasing research interest for applications of vision recognition due to its intrinsic advantages on efficiency and speed. However, the existing event-based models for vision recognition are faced with several issues, such as large network complexity and expensive training cost. In this paper, we propose an improved multi-liquid state machine (M-LSM) method for high-performance vision recognition. Specifically, we introduce two methods, namely multi-state fusion and multi-liquid search, to optimize the liquid state machine (LSM). Multistate fusion by sampling the liquid state at multiple timesteps could reserve richer spatiotemporal information. We adapt network architecture search (NAS) to find the potential optimal architecture of the multi-liquid state machine. We also train the M-LSM through an unsupervised learning rule spike-timing dependent plasticity (STDP). Our M-LSM is evaluated on two event-based datasets and demonstrates state-of-the-art recognition performance with superior advantages on network complexity and training cost.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"23 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-021-1326-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Event-based computation has recently gained increasing research interest for applications of vision recognition due to its intrinsic advantages on efficiency and speed. However, the existing event-based models for vision recognition are faced with several issues, such as large network complexity and expensive training cost. In this paper, we propose an improved multi-liquid state machine (M-LSM) method for high-performance vision recognition. Specifically, we introduce two methods, namely multi-state fusion and multi-liquid search, to optimize the liquid state machine (LSM). Multistate fusion by sampling the liquid state at multiple timesteps could reserve richer spatiotemporal information. We adapt network architecture search (NAS) to find the potential optimal architecture of the multi-liquid state machine. We also train the M-LSM through an unsupervised learning rule spike-timing dependent plasticity (STDP). Our M-LSM is evaluated on two event-based datasets and demonstrates state-of-the-art recognition performance with superior advantages on network complexity and training cost.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
M-LSM:用于基于事件的视觉识别的改进型多液态机器
基于事件的计算因其在效率和速度上的固有优势,近来在视觉识别应用领域获得了越来越多的研究兴趣。然而,现有的基于事件的视觉识别模型面临着网络复杂度大、训练成本高昂等问题。本文提出了一种用于高性能视觉识别的改进型多液态机(M-LSM)方法。具体来说,我们引入了多态融合和多液态搜索两种方法来优化液态机(LSM)。通过在多个时间步采样液态,多态融合可以保留更丰富的时空信息。我们采用网络架构搜索(NAS)来寻找多液态机的潜在最优架构。我们还通过无监督学习规则尖峰计时可塑性(STDP)来训练多液态机。我们在两个基于事件的数据集上对 M-LSM 进行了评估,结果表明它具有最先进的识别性能,同时在网络复杂性和训练成本方面也具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computer Science and Technology
Journal of Computer Science and Technology 工程技术-计算机:软件工程
CiteScore
4.00
自引率
0.00%
发文量
2255
审稿时长
9.8 months
期刊介绍: Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends. Topics covered by Journal of Computer Science and Technology include but are not limited to: -Computer Architecture and Systems -Artificial Intelligence and Pattern Recognition -Computer Networks and Distributed Computing -Computer Graphics and Multimedia -Software Systems -Data Management and Data Mining -Theory and Algorithms -Emerging Areas
期刊最新文献
Balancing Accuracy and Training Time in Federated Learning for Violence Detection in Surveillance Videos: A Study of Neural Network Architectures A Survey of Multimodal Controllable Diffusion Models A Survey of LLM Datasets: From Autoregressive Model to AI Chatbot Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview Age-of-Information-Aware Federated Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1