Yu-Han Zheng , Guan-Jing Pan , Yuan Quan, Hong-Yu Zhang
{"title":"Construction of microgravity biological knowledge graph and its applications in anti-osteoporosis drug prediction","authors":"Yu-Han Zheng , Guan-Jing Pan , Yuan Quan, Hong-Yu Zhang","doi":"10.1016/j.lssr.2024.01.004","DOIUrl":null,"url":null,"abstract":"<div><p>Microgravity in the space environment can potentially have various negative effects on the human body, one of which is bone loss. Given the increasing frequency of human space activities, there is an urgent need to identify effective anti-osteoporosis drugs for the microgravity environment. Traditional microgravity experiments conducted in space suffer from limitations such as time-consuming procedures, high costs, and small sample sizes. In recent years, the in-silico drug discovery method has emerged as a promising strategy due to the advancements in bioinformatics and computer technology. In this study, we first collected a total of 184,915 literature articles related to microgravity and bone loss. We employed a combination of dependency path extraction and clustering techniques to extract data from the text. Afterwards, we conducted data cleaning and standardization to integrate data from several sources, including The Global Network of Biomedical Relationships (GNBR), Curated Drug–Drug Interactions Database (DDInter), Search Tool for Interacting Chemicals (STITCH), DrugBank, and Traditional Chinese Medicines Integrated Database (TCMID). Through this integration process, we constructed the Microgravity Biology Knowledge Graph (MBKG) consisting of 134,796 biological entities and 3,395,273 triplets. Subsequently, the TransE model was utilized to perform knowledge graph embedding. By calculating the distances between entities in the model space, the model successfully predicted potential drugs for treating osteoporosis and microgravity-induced bone loss. The results indicate that out of the top 10 ranked western medicines, 7 have been approved for the treatment of osteoporosis. Additionally, among the top 10 ranked traditional Chinese medicines, 5 have scientific literature supporting their effectiveness in treating bone loss. Among the top 20 predicted medicines for microgravity-induced bone loss, 15 have been studied in microgravity or simulated microgravity environments, while the remaining 5 are also applicable for treating osteoporosis. This research highlights the potential application of MBKG in the field of space drug discovery.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214552424000142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Microgravity in the space environment can potentially have various negative effects on the human body, one of which is bone loss. Given the increasing frequency of human space activities, there is an urgent need to identify effective anti-osteoporosis drugs for the microgravity environment. Traditional microgravity experiments conducted in space suffer from limitations such as time-consuming procedures, high costs, and small sample sizes. In recent years, the in-silico drug discovery method has emerged as a promising strategy due to the advancements in bioinformatics and computer technology. In this study, we first collected a total of 184,915 literature articles related to microgravity and bone loss. We employed a combination of dependency path extraction and clustering techniques to extract data from the text. Afterwards, we conducted data cleaning and standardization to integrate data from several sources, including The Global Network of Biomedical Relationships (GNBR), Curated Drug–Drug Interactions Database (DDInter), Search Tool for Interacting Chemicals (STITCH), DrugBank, and Traditional Chinese Medicines Integrated Database (TCMID). Through this integration process, we constructed the Microgravity Biology Knowledge Graph (MBKG) consisting of 134,796 biological entities and 3,395,273 triplets. Subsequently, the TransE model was utilized to perform knowledge graph embedding. By calculating the distances between entities in the model space, the model successfully predicted potential drugs for treating osteoporosis and microgravity-induced bone loss. The results indicate that out of the top 10 ranked western medicines, 7 have been approved for the treatment of osteoporosis. Additionally, among the top 10 ranked traditional Chinese medicines, 5 have scientific literature supporting their effectiveness in treating bone loss. Among the top 20 predicted medicines for microgravity-induced bone loss, 15 have been studied in microgravity or simulated microgravity environments, while the remaining 5 are also applicable for treating osteoporosis. This research highlights the potential application of MBKG in the field of space drug discovery.