{"title":"The Daytime Variations of Thermospheric Temperature and Neutral Density Over Beijing During Minor Geomagnetic Storm on 3–4 February 2022","authors":"Shaoyang Li, Zhipeng Ren, Tingting Yu, Guangming Chen, Guozhu Li, Biqiang Zhao, Xinan Yue, Yong Wei","doi":"10.1029/2023sw003677","DOIUrl":null,"url":null,"abstract":"On 3 February 2022, 38 satellites launched by SpaceX re-entered the atmosphere and were subsequently destroyed. An investigation found that a minor geomagnetic storm occurred on 3–4 February 2022 led to a neutral density enhancement and large atmospheric drag. To better understand the responses of the thermosphere to geomagnetic storms, the method proposed by Li et al. (2023, https://doi.org/10.1029/2022ja030988) was employed to extract exospheric temperature (Tex) from ionosonde electron density profiles (∼150–200 km) in Beijing (geolocation: 39.56°N; 116.2°E; geomagnetic location: 30.16°N; 172.08°W) station. The retrieved Tex was plugged into the NRLMSISE-00 model to calculate the corresponding neutral density. Derived results showed a ∼2%–7% enhancement in Tex and a ∼15%–38% enhancement in neutral density at 430 km. The relative deviation in neutral density on the satellites’ orbital trajectory ranges from ∼10% (210 km) to ∼35% (500 km) on 3 February, and from ∼13% (210 km) to ∼60% (500 km) on 4 February. Furthermore, the neutral density reproduced the variations observed by the SWARM-C satellite fairly well both on quiet and disturbed days. These results suggest that even a minor geomagnetic storm can cause significant changes in neutral temperature and neutral density at middle latitudes. Additionally, the application of our inversion method, combined with the global, long-term and real-time ionospheric observations from ionosondes, provides an opportunity to improve the capability of thermosphere forecasting and nowcasting.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"4 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023sw003677","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
On 3 February 2022, 38 satellites launched by SpaceX re-entered the atmosphere and were subsequently destroyed. An investigation found that a minor geomagnetic storm occurred on 3–4 February 2022 led to a neutral density enhancement and large atmospheric drag. To better understand the responses of the thermosphere to geomagnetic storms, the method proposed by Li et al. (2023, https://doi.org/10.1029/2022ja030988) was employed to extract exospheric temperature (Tex) from ionosonde electron density profiles (∼150–200 km) in Beijing (geolocation: 39.56°N; 116.2°E; geomagnetic location: 30.16°N; 172.08°W) station. The retrieved Tex was plugged into the NRLMSISE-00 model to calculate the corresponding neutral density. Derived results showed a ∼2%–7% enhancement in Tex and a ∼15%–38% enhancement in neutral density at 430 km. The relative deviation in neutral density on the satellites’ orbital trajectory ranges from ∼10% (210 km) to ∼35% (500 km) on 3 February, and from ∼13% (210 km) to ∼60% (500 km) on 4 February. Furthermore, the neutral density reproduced the variations observed by the SWARM-C satellite fairly well both on quiet and disturbed days. These results suggest that even a minor geomagnetic storm can cause significant changes in neutral temperature and neutral density at middle latitudes. Additionally, the application of our inversion method, combined with the global, long-term and real-time ionospheric observations from ionosondes, provides an opportunity to improve the capability of thermosphere forecasting and nowcasting.