{"title":"Enhancing Wheat Productivity Through Genotypes and Growth Regulators Application Under Higher Fertility Conditions in Sub-humid Climate","authors":"Rajender Singh Chhokar, Neeraj Kumar, Subhash Chander Gill, Subhash Chandra Tripathi, Gyanendra Singh","doi":"10.1007/s42106-023-00277-w","DOIUrl":null,"url":null,"abstract":"<p>The stagnant crop productivity and declining factor productivity especially under rice-wheat system in changing climate scenario demand the adoption of nutrient responsive high yielding climate-resilient varieties. Considering these challenges, the present study was conducted during two consecutive <i>Rabi</i> seasons of 2020-21 and 2021-22 with an aim to improve wheat productivity through appropriate combinations of genotypes, nutrient management and plant growth regulators (PGRs). The experiment was conducted in split-plot design with two nutrient levels {recommended dose of fertilizer (RDF) as 150:60:40 kg N, P<sub>2</sub>O<sub>5</sub> and K<sub>2</sub>O ha<sup>-1</sup>, respectively, and 150% RDF + 15 t FYM (farm yard manure) ha<sup>-1</sup> + two sprays of PGRs consisting of tank-mix of chlormequat chloride @ 400 g + tebuconazole @ 172 g ha<sup>-1</sup> at the first node and flag leaf stage} in main-plots and nine genotypes (DBW187, DBW303, DBW327, DBW332, DBW370, DBW371, DBW372, HD3086 and PBW872) in sub-plots. The plant height significantly reduced while earheads m<sup>-2</sup> and grains m<sup>-2</sup> improved with PGRs application under high fertility which led to increased (12.6%) mean grain yield over RDF. Among genotypes, maximum yield was observed for DBW370 (67.84 q ha<sup>-1</sup>) followed by PBW872, DBW371 and DBW372. Nutrient management and genotype interaction revealed that more grains m<sup>-2</sup> in DBW370 led to maximum yield (66.2 q ha<sup>-1</sup>) at RDF while bolder grains in PBW872 made it top yielder (71.16 q ha<sup>-1</sup>) under high fertility condition. It is concluded that productivity of modern wheat cultivars can be improved through higher fertility and tank-mix application of chlormequat + tebuconazole.</p>","PeriodicalId":54947,"journal":{"name":"International Journal of Plant Production","volume":"25 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plant Production","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42106-023-00277-w","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The stagnant crop productivity and declining factor productivity especially under rice-wheat system in changing climate scenario demand the adoption of nutrient responsive high yielding climate-resilient varieties. Considering these challenges, the present study was conducted during two consecutive Rabi seasons of 2020-21 and 2021-22 with an aim to improve wheat productivity through appropriate combinations of genotypes, nutrient management and plant growth regulators (PGRs). The experiment was conducted in split-plot design with two nutrient levels {recommended dose of fertilizer (RDF) as 150:60:40 kg N, P2O5 and K2O ha-1, respectively, and 150% RDF + 15 t FYM (farm yard manure) ha-1 + two sprays of PGRs consisting of tank-mix of chlormequat chloride @ 400 g + tebuconazole @ 172 g ha-1 at the first node and flag leaf stage} in main-plots and nine genotypes (DBW187, DBW303, DBW327, DBW332, DBW370, DBW371, DBW372, HD3086 and PBW872) in sub-plots. The plant height significantly reduced while earheads m-2 and grains m-2 improved with PGRs application under high fertility which led to increased (12.6%) mean grain yield over RDF. Among genotypes, maximum yield was observed for DBW370 (67.84 q ha-1) followed by PBW872, DBW371 and DBW372. Nutrient management and genotype interaction revealed that more grains m-2 in DBW370 led to maximum yield (66.2 q ha-1) at RDF while bolder grains in PBW872 made it top yielder (71.16 q ha-1) under high fertility condition. It is concluded that productivity of modern wheat cultivars can be improved through higher fertility and tank-mix application of chlormequat + tebuconazole.
期刊介绍:
IJPP publishes original research papers and review papers related to physiology, ecology and production of field crops and forages at field, farm and landscape level. Preferred topics are: (1) yield gap in cropping systems: estimation, causes and closing measures, (2) ecological intensification of plant production, (3) improvement of water and nutrients management in plant production systems, (4) environmental impact of plant production, (5) climate change and plant production, and (6) responses of plant communities to extreme weather conditions.
Please note that IJPP does not publish papers with a background in genetics and plant breeding, plant molecular biology, plant biotechnology, as well as soil science, meteorology, product process and post-harvest management unless they are strongly related to plant production under field conditions.
Papers based on limited data or of local importance, and results from routine experiments will not normally be considered for publication. Field experiments should include at least two years and/or two environments. Papers on plants other than field crops and forages, and papers based on controlled-environment experiments will not be considered.