{"title":"A machine learning approach for predicting treatment response of hyponatremia","authors":"Tamaki Kinoshita, Shintaro Oyama, Daisuke Hagiwara, Yoshinori Azuma, Hiroshi Arima","doi":"10.1507/endocrj.ej23-0561","DOIUrl":null,"url":null,"abstract":"</p><p>Hyponatremia leads to severe central nervous system disorders and requires immediate treatment in some cases. However, a rapid increase in serum sodium (s-Na) concentration could cause osmotic demyelination syndrome. To achieve a safety hyponatremia treatment, we develop a prediction model of s-Na concentration using a machine learning. Among the 341 and 47 patients admitted to two tertiary hospitals for hyponatremia treatment (s-Na <130 mEq/L), those who were admitted to the general unit with urine sodium <20 mEq/L or treated with desmopressin were excluded. Ultimately, 74 and 15 patients (342 and 146 6-hourly datasets) were included in the learning and validation data, respectively. We trained the prediction model using three regression algorithms for shallow machine learning to predict s-Na every 6 h during treatment with the data of patients with hyponatremia (median s-Na: 112.5 mEq/L; range: 110.0–116.8 mEq/L) from one hospital. The model was validated externally using the data of patients with hyponatremia (median s-Na: 117.0 mEq/L; range: 112.9–120.0 mEq/L) from another hospital. Using 5–7 predictors (water intake, sodium intake, potassium intake, urine volume, s-Na concentration, serum potassium concentration, serum chloride concentration), the support vector regression model showed the best performance overall (root mean square error = 0.05396; R<sup>2</sup> = 0.92), followed by the linear regression and regression tree models. The predicted s-Na levels, using explainable machine learning algorithms and clinically accessible parameters, correlated well with the actual levels. Thus, our model could be applied to the treatment of hyponatremia in clinical practice.</p>\n<p></p>","PeriodicalId":11631,"journal":{"name":"Endocrine journal","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1507/endocrj.ej23-0561","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Hyponatremia leads to severe central nervous system disorders and requires immediate treatment in some cases. However, a rapid increase in serum sodium (s-Na) concentration could cause osmotic demyelination syndrome. To achieve a safety hyponatremia treatment, we develop a prediction model of s-Na concentration using a machine learning. Among the 341 and 47 patients admitted to two tertiary hospitals for hyponatremia treatment (s-Na <130 mEq/L), those who were admitted to the general unit with urine sodium <20 mEq/L or treated with desmopressin were excluded. Ultimately, 74 and 15 patients (342 and 146 6-hourly datasets) were included in the learning and validation data, respectively. We trained the prediction model using three regression algorithms for shallow machine learning to predict s-Na every 6 h during treatment with the data of patients with hyponatremia (median s-Na: 112.5 mEq/L; range: 110.0–116.8 mEq/L) from one hospital. The model was validated externally using the data of patients with hyponatremia (median s-Na: 117.0 mEq/L; range: 112.9–120.0 mEq/L) from another hospital. Using 5–7 predictors (water intake, sodium intake, potassium intake, urine volume, s-Na concentration, serum potassium concentration, serum chloride concentration), the support vector regression model showed the best performance overall (root mean square error = 0.05396; R2 = 0.92), followed by the linear regression and regression tree models. The predicted s-Na levels, using explainable machine learning algorithms and clinically accessible parameters, correlated well with the actual levels. Thus, our model could be applied to the treatment of hyponatremia in clinical practice.
期刊介绍:
Endocrine Journal is an open access, peer-reviewed online journal with a long history. This journal publishes peer-reviewed research articles in multifaceted fields of basic, translational and clinical endocrinology. Endocrine Journal provides a chance to exchange your ideas, concepts and scientific observations in any area of recent endocrinology. Manuscripts may be submitted as Original Articles, Notes, Rapid Communications or Review Articles. We have a rapid reviewing and editorial decision system and pay a special attention to our quick, truly scientific and frequently-citable publication. Please go through the link for author guideline.