Therapeutic Voyage of Graphene-based Biosensor

IF 1.2 4区 医学 Q4 CHEMISTRY, MEDICINAL Letters in Drug Design & Discovery Pub Date : 2024-02-01 DOI:10.2174/0115701808291102240130113741
Rama Sharma
{"title":"Therapeutic Voyage of Graphene-based Biosensor","authors":"Rama Sharma","doi":"10.2174/0115701808291102240130113741","DOIUrl":null,"url":null,"abstract":": The study of carbon-based materials and nanoparticles is currently an exciting field of study in the domain of material science. One of the most prominent of these materials is graphene, along with its related components graphene oxide and reduced graphene oxide. A single-layer, twodimensional nanomaterial called graphene (GN) is employed in many different industries, such as electronics and biology. Graphene is a remarkable two-dimensional substance that has earned the title of \"wonder material.\" Its remarkable electrical, optical, thermal, and mechanical qualities have attracted significant attention. Graphene's intriguing characteristics have led to its integration into numerous biosensing applications. Graphene possesses remarkable chemical, electrical, and physical qualities. The distinctive properties of graphene, particularly its electrical conductivity, large surface area, and significant electron mobility, are focusing more attention on applications in biomedicine that facilitate easier health monitoring. Biosensors with high sensitivity and precision can enhance patient care, and offer an opportunity for an early illness diagnosis and clinical pathogen identification. Additionally, a wide range of biological molecules, including glucose, hydrogen peroxide, cholesterol, dopamine, etc., can be detected using graphene-based biosensors. This study evaluates contemporary developments regarding graphene-based biosensors and their prospects and difficulties in this rapidly developing profession in the coming era. Graphene-based nanomaterials are appropriate to be employed in various biological and sensory contexts, including medicine and gene transfer, because of their unusual topologies and extraordinary properties. Graphene's outstanding characteristics enable biosensing applications to obtain the appropriate sensitivity, selectivity, and repeatability for a range of targets.","PeriodicalId":18059,"journal":{"name":"Letters in Drug Design & Discovery","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Drug Design & Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115701808291102240130113741","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

: The study of carbon-based materials and nanoparticles is currently an exciting field of study in the domain of material science. One of the most prominent of these materials is graphene, along with its related components graphene oxide and reduced graphene oxide. A single-layer, twodimensional nanomaterial called graphene (GN) is employed in many different industries, such as electronics and biology. Graphene is a remarkable two-dimensional substance that has earned the title of "wonder material." Its remarkable electrical, optical, thermal, and mechanical qualities have attracted significant attention. Graphene's intriguing characteristics have led to its integration into numerous biosensing applications. Graphene possesses remarkable chemical, electrical, and physical qualities. The distinctive properties of graphene, particularly its electrical conductivity, large surface area, and significant electron mobility, are focusing more attention on applications in biomedicine that facilitate easier health monitoring. Biosensors with high sensitivity and precision can enhance patient care, and offer an opportunity for an early illness diagnosis and clinical pathogen identification. Additionally, a wide range of biological molecules, including glucose, hydrogen peroxide, cholesterol, dopamine, etc., can be detected using graphene-based biosensors. This study evaluates contemporary developments regarding graphene-based biosensors and their prospects and difficulties in this rapidly developing profession in the coming era. Graphene-based nanomaterials are appropriate to be employed in various biological and sensory contexts, including medicine and gene transfer, because of their unusual topologies and extraordinary properties. Graphene's outstanding characteristics enable biosensing applications to obtain the appropriate sensitivity, selectivity, and repeatability for a range of targets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石墨烯生物传感器的治疗之旅
:碳基材料和纳米粒子研究是材料科学领域目前一个令人兴奋的研究领域。石墨烯及其相关成分氧化石墨烯和还原氧化石墨烯是这些材料中最突出的一种。一种名为石墨烯(GN)的单层二维纳米材料被广泛应用于电子和生物等不同行业。石墨烯是一种非凡的二维物质,被誉为 "神奇材料"。其卓越的电气、光学、热学和机械特性引起了广泛关注。石墨烯引人入胜的特性使其被广泛应用于生物传感领域。石墨烯具有非凡的化学、电气和物理特性。石墨烯的独特性能,尤其是其导电性、大表面积和显著的电子迁移率,使生物医学中更多的应用受到关注,从而使健康监测变得更加容易。具有高灵敏度和高精度的生物传感器可以加强对病人的护理,并为早期疾病诊断和临床病原体识别提供机会。此外,石墨烯基生物传感器还能检测多种生物分子,包括葡萄糖、过氧化氢、胆固醇、多巴胺等。本研究评估了石墨烯基生物传感器的当代发展及其在未来这个快速发展的行业中的前景和困难。石墨烯基纳米材料因其不寻常的拓扑结构和非凡的特性,适合应用于各种生物和感官领域,包括医学和基因转移。石墨烯的卓越特性使生物传感应用能够为一系列目标获得适当的灵敏度、选择性和可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
245
审稿时长
3 months
期刊介绍: Aims & Scope Letters in Drug Design & Discovery publishes letters, mini-reviews, highlights and guest edited thematic issues in all areas of rational drug design and discovery including medicinal chemistry, in-silico drug design, combinatorial chemistry, high-throughput screening, drug targets, and structure-activity relationships. The emphasis is on publishing quality papers very rapidly by taking full advantage of latest Internet technology for both submission and review of manuscripts. The online journal is an essential reading to all pharmaceutical scientists involved in research in drug design and discovery.
期刊最新文献
Structural Optimization of Quinazolin-4-One Derivatives as Novel SARS-CoV-2 Mpro Inhibitors by Molecular Simulation Therapeutic Potential of Colchicum luteum Against Flagellin (FliC) in Salmonella typhimurium: An In silico Approach The Therapeutic Potential of Ganoderma lucidum Karst and Ziziphus jujuba Mill for Postsurgical Adhesion Band Formation Indirubin as an AHR Ligand: A Combined Network Pharmacology and Experimental Approach to Psoriasis Therapy Exploring New Potential Pkcθ Inhibitors Using Pharmacophore Modeling, Molecular Docking Analysis, and Molecular Dynamics Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1