Cordélia Salomez-Ihl , Stéphane Tanguy , Jean-Pierre Alcaraz , Chloé Davin , Victor Pascal-Moussellard , Mariem Jabeur , Pierrick Bedouch , Ludovic Le Hegarat , Valérie Fessard , Anne-Louise Blier , Sylvie Huet , Philippe Cinquin , François Boucher
{"title":"Hydrogen inhalation: in vivo rat genotoxicity tests","authors":"Cordélia Salomez-Ihl , Stéphane Tanguy , Jean-Pierre Alcaraz , Chloé Davin , Victor Pascal-Moussellard , Mariem Jabeur , Pierrick Bedouch , Ludovic Le Hegarat , Valérie Fessard , Anne-Louise Blier , Sylvie Huet , Philippe Cinquin , François Boucher","doi":"10.1016/j.mrgentox.2024.503736","DOIUrl":null,"url":null,"abstract":"<div><p>Preclinical and clinical studies have shown that molecular hydrogen (H<sub>2</sub>) has anti-oxidant, anti-inflammatory, and anti-apoptotic properties. Safety data are available in the literature and acute toxicity has been tested in isolated cells and laboratory animals. We have evaluates the genotoxicity of H<sub>2</sub> in vivo in rats after 72 h exposure, following the International Council for Harmonization guidelines ICH S2 (R1). The study was conducted on three groups of male Wistar rats: a negative control group, a positive control group receiving methyl methanesulfonate, and a H<sub>2</sub>-treated group receiving a 3.1% H<sub>2</sub> gas mixture for 72 h. Alkaline comet, formamidopyrimidine DNA glycosylase (Fpg)-modified comet and bone marrow micronucleus assays were performed. H<sub>2</sub> exposure increased neither comet-tail DNA intensity (DNA damage) nor frequency of “hedgehogs” in blood, liver, lungs, or bronchoalveolar lavage fluid. No increase in Fpg-sensitive sites in lungs, no induction of micronucleus formation, and no imbalance of immature erythrocyte to total erythrocyte ratio (IME%) was observed in rats exposed to H<sub>2</sub>. The ICH S2 (R1) test-battery revealed no in vivo genotoxicity in Wistar rats after 72 h inhalation of a mixture containing 3.1% H<sub>2</sub>.</p></div>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"894 ","pages":"Article 503736"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383571824000123","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Preclinical and clinical studies have shown that molecular hydrogen (H2) has anti-oxidant, anti-inflammatory, and anti-apoptotic properties. Safety data are available in the literature and acute toxicity has been tested in isolated cells and laboratory animals. We have evaluates the genotoxicity of H2 in vivo in rats after 72 h exposure, following the International Council for Harmonization guidelines ICH S2 (R1). The study was conducted on three groups of male Wistar rats: a negative control group, a positive control group receiving methyl methanesulfonate, and a H2-treated group receiving a 3.1% H2 gas mixture for 72 h. Alkaline comet, formamidopyrimidine DNA glycosylase (Fpg)-modified comet and bone marrow micronucleus assays were performed. H2 exposure increased neither comet-tail DNA intensity (DNA damage) nor frequency of “hedgehogs” in blood, liver, lungs, or bronchoalveolar lavage fluid. No increase in Fpg-sensitive sites in lungs, no induction of micronucleus formation, and no imbalance of immature erythrocyte to total erythrocyte ratio (IME%) was observed in rats exposed to H2. The ICH S2 (R1) test-battery revealed no in vivo genotoxicity in Wistar rats after 72 h inhalation of a mixture containing 3.1% H2.
期刊介绍:
Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas:
New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results).
Alternatives to and refinement of the use of animals in genotoxicity testing.
Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials.
Studies of epigenetic changes in relation to genotoxic effects.
The use of structure-activity relationships in predicting genotoxic effects.
The isolation and chemical characterization of novel environmental mutagens.
The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures.
The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing).
MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.