Involvement of sodium–glucose cotransporter-1 activities in maintaining oscillatory Cl− currents from mouse submandibular acinar cells

{"title":"Involvement of sodium–glucose cotransporter-1 activities in maintaining oscillatory Cl− currents from mouse submandibular acinar cells","authors":"","doi":"10.1007/s00360-024-01532-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In salivary acinar cells, cholinergic stimulation induces elevations of cytosolic [Ca<sup>2+</sup>]<sub>i</sub> to activate the apical exit of Cl<sup>−</sup> through TMEM16A Cl<sup>−</sup> channels, which acts as a driving force for fluid secretion. To sustain the Cl<sup>−</sup> secretion, [Cl<sup>−</sup>]<sub>i</sub> must be maintained to levels that are greater than the electrochemical equilibrium mainly by Na<sup>+</sup>-K<sup>+</sup>-2Cl<sup>−</sup> cotransporter-mediated Cl<sup>−</sup> entry in basolateral membrane. Glucose transporters carry glucose into the cytoplasm, enabling the cells to produce ATP to maintain Cl<sup>−</sup> and fluid secretion. Sodium–glucose cotransporter-1 is a glucose transporter highly expressed in acinar cells. The salivary flow is suppressed by the sodium–glucose cotransporter-1 inhibitor phlorizin. However, it remains elusive how sodium–glucose cotransporter-1 contributes to maintaining salivary fluid secretion. To examine if sodium–glucose cotransporter-1 activity is required for sustaining Cl<sup>−</sup> secretion to drive fluid secretion, we analyzed the Cl<sup>−</sup> currents activated by the cholinergic agonist, carbachol, in submandibular acinar cells while comparing the effect of phlorizin on the currents between the whole-cell patch and the gramicidin-perforated patch configurations. Phlorizin suppressed carbachol-induced oscillatory Cl<sup>−</sup> currents by reducing the Cl<sup>−</sup> efflux dependent on the Na<sup>+</sup>-K<sup>+</sup>-2Cl<sup>−</sup> cotransporter-mediated Cl<sup>−</sup> entry in addition to affecting TMEM16A activity. Our results suggest that the sodium–glucose cotransporter-1 activity is necessary for maintaining the oscillatory Cl<sup>−</sup> secretion supported by the Na<sup>+</sup>-K<sup>+</sup>-2Cl<sup>−</sup> cotransporter activity in real time to drive fluid secretion. The concerted effort of sodium–glucose cotransporter-1, Na<sup>+</sup>-K<sup>+</sup>-2Cl<sup>−</sup> cotransporter, and apically located Cl<sup>−</sup> channels might underlie the efficient driving of Cl<sup>−</sup> secretion in different secretory epithelia from a variety of animal species.</p>","PeriodicalId":15377,"journal":{"name":"Journal of Comparative Physiology B","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00360-024-01532-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In salivary acinar cells, cholinergic stimulation induces elevations of cytosolic [Ca2+]i to activate the apical exit of Cl through TMEM16A Cl channels, which acts as a driving force for fluid secretion. To sustain the Cl secretion, [Cl]i must be maintained to levels that are greater than the electrochemical equilibrium mainly by Na+-K+-2Cl cotransporter-mediated Cl entry in basolateral membrane. Glucose transporters carry glucose into the cytoplasm, enabling the cells to produce ATP to maintain Cl and fluid secretion. Sodium–glucose cotransporter-1 is a glucose transporter highly expressed in acinar cells. The salivary flow is suppressed by the sodium–glucose cotransporter-1 inhibitor phlorizin. However, it remains elusive how sodium–glucose cotransporter-1 contributes to maintaining salivary fluid secretion. To examine if sodium–glucose cotransporter-1 activity is required for sustaining Cl secretion to drive fluid secretion, we analyzed the Cl currents activated by the cholinergic agonist, carbachol, in submandibular acinar cells while comparing the effect of phlorizin on the currents between the whole-cell patch and the gramicidin-perforated patch configurations. Phlorizin suppressed carbachol-induced oscillatory Cl currents by reducing the Cl efflux dependent on the Na+-K+-2Cl cotransporter-mediated Cl entry in addition to affecting TMEM16A activity. Our results suggest that the sodium–glucose cotransporter-1 activity is necessary for maintaining the oscillatory Cl secretion supported by the Na+-K+-2Cl cotransporter activity in real time to drive fluid secretion. The concerted effort of sodium–glucose cotransporter-1, Na+-K+-2Cl cotransporter, and apically located Cl channels might underlie the efficient driving of Cl secretion in different secretory epithelia from a variety of animal species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钠-葡萄糖共转运体-1 活动参与维持小鼠下颌下腺尖状腺细胞的振荡 Cl- 电流
摘要 在唾液腺腺体细胞中,胆碱能刺激引起细胞膜[Ca2+]i升高,激活Cl-通过TMEM16A Cl-通道从顶端排出,从而成为液体分泌的驱动力。为了维持 Cl- 的分泌,[Cl-]i 必须维持在高于电化学平衡的水平,这主要是通过 Na+-K+-2Cl- 共转运体介导的 Cl- 进入基底膜来实现的。葡萄糖转运体将葡萄糖带入细胞质,使细胞产生 ATP 以维持 Cl- 和液体分泌。钠-葡萄糖共转运体-1 是一种在肾小管细胞中高度表达的葡萄糖转运体。钠-葡萄糖共转运体-1抑制剂氯嗪可抑制唾液流量。然而,钠-葡萄糖共转运体-1 是如何帮助维持唾液分泌的仍是一个谜。为了研究钠-葡萄糖共转运体-1的活性是否是维持Cl-分泌驱动液体分泌所必需的,我们分析了胆碱能激动剂卡巴胆碱激活下颌下腺尖锐湿疣细胞中的Cl-电流,同时比较了氯嗪对全细胞贴片和gramicidin-穿孔贴片结构中电流的影响。除了影响TMEM16A的活性外,氯嗪还通过减少依赖于Na+-K+-2Cl-共转运体介导的Cl-进入的Cl-外流抑制了卡巴胆碱诱导的振荡Cl-电流。我们的研究结果表明,钠-葡萄糖共转运体-1的活性是维持由Na+-K+-2Cl-共转运体活性实时支持的振荡性Cl-分泌以驱动液体分泌的必要条件。钠-葡萄糖共转运体-1、Na+-K+-2Cl-共转运体和位于顶端的 Cl- 通道的协同作用可能是多种动物的不同分泌上皮细胞有效驱动 Cl- 分泌的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metabolic stability of the Pallas’ spadefoot Pelobates vespertinus under extreme hypoxia Effects of early-life amino acids supplementation on fish responses to a thermal challenge Life in the margins: the effect of immersion/emersion and tidal cycle on the North Atlantic limpet Patella vulgata protein synthesis rates Osteological profiling of femoral diaphysis and neck in aquatic, semiaquatic, and terrestrial carnivores and rodents: effects of body size and locomotor habits Methods to estimate body temperature and energy expenditure dynamics in fed and fasted laboratory mice: effects of sleep deprivation and light exposure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1