Pub Date : 2024-09-18DOI: 10.1007/s00360-024-01584-y
S. V. Shekhovtsov, N. A. Bulakhova, Yu. P. Tsentalovich, N. A. Osik, E. N. Meshcheryakova, T. V. Poluboyarova, D. I. Berman
The Pallas’ spadefoot Pelobates vespertinus is a frog species native to eastern Europe and west Siberia. This species resists harsh winter conditions by moving up to 2 m underground. This amphibian is the first species known to withstand extreme air hypoxia. In this study, we investigated the metabolome of liver, heart, and brain of the Pallas’ spadefoot after a month-long exposure of hypoxia, with oxygen levels reduced to approximately one-tenth of the air normal content. Surprisingly, our findings revealed a limited impact of hypoxia on the metabolomic profiles. Concentrations of glycolysis end products (lactate and alanine) increased only slightly compared to other amphibians under hypoxia, and no accumulation of succinate was observed. Furthermore, there were no notable changes in the content of adenosine phosphates. These results are consistent with a previous study, which indicated that the Pallas’ spadefoot possesses relatively small glycogen and fat reserves before the winter compared to other frogs. It appears that this species conserves energy during winter by minimizing its metabolic activity. These findings corroborated the hypothesis that the survival of P. vespertinus under hypoxic conditions primarily relies on metabolic suppression rather than substantial energy reserves.
Pallas' spadefoot Pelobates vespertinus 是一种原产于欧洲东部和西伯利亚西部的青蛙物种。该物种通过在地下 2 米处移动来抵御严酷的冬季条件。这种两栖动物是已知的第一个能够承受极端空气缺氧的物种。在这项研究中,我们调查了帕拉斯锹形目两栖动物肝脏、心脏和大脑的代谢组,这些代谢组在缺氧情况下暴露了一个月,氧气水平降低到空气正常含量的大约十分之一。令人惊讶的是,我们的研究结果表明,缺氧对代谢组的影响有限。与缺氧条件下的其他两栖动物相比,糖酵解终产物(乳酸和丙氨酸)的浓度仅略有增加,没有观察到琥珀酸的积累。此外,腺苷磷酸盐的含量也没有明显变化。这些结果与之前的一项研究一致,该研究表明,与其他蛙类相比,帕拉斯锹形目蛙在冬季前拥有的糖原和脂肪储备相对较少。看来该物种在冬季是通过尽量减少新陈代谢活动来保存能量的。这些发现证实了一个假设,即 P. vespertinus 在缺氧条件下的生存主要依赖于代谢抑制,而不是大量的能量储备。
{"title":"Metabolic stability of the Pallas’ spadefoot Pelobates vespertinus under extreme hypoxia","authors":"S. V. Shekhovtsov, N. A. Bulakhova, Yu. P. Tsentalovich, N. A. Osik, E. N. Meshcheryakova, T. V. Poluboyarova, D. I. Berman","doi":"10.1007/s00360-024-01584-y","DOIUrl":"https://doi.org/10.1007/s00360-024-01584-y","url":null,"abstract":"<p>The Pallas’ spadefoot <i>Pelobates vespertinus</i> is a frog species native to eastern Europe and west Siberia. This species resists harsh winter conditions by moving up to 2 m underground. This amphibian is the first species known to withstand extreme air hypoxia. In this study, we investigated the metabolome of liver, heart, and brain of the Pallas’ spadefoot after a month-long exposure of hypoxia, with oxygen levels reduced to approximately one-tenth of the air normal content. Surprisingly, our findings revealed a limited impact of hypoxia on the metabolomic profiles. Concentrations of glycolysis end products (lactate and alanine) increased only slightly compared to other amphibians under hypoxia, and no accumulation of succinate was observed. Furthermore, there were no notable changes in the content of adenosine phosphates. These results are consistent with a previous study, which indicated that the Pallas’ spadefoot possesses relatively small glycogen and fat reserves before the winter compared to other frogs. It appears that this species conserves energy during winter by minimizing its metabolic activity. These findings corroborated the hypothesis that the survival of <i>P. vespertinus</i> under hypoxic conditions primarily relies on metabolic suppression rather than substantial energy reserves.</p>","PeriodicalId":15377,"journal":{"name":"Journal of Comparative Physiology B","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1007/s00360-024-01581-1
Carmen Navarro-Guillén, Ismael Jerez-Cepa, André Lopes, Juan Miguel Mancera, Sofia Engrola
Nutritional programming is a promising concept for promoting metabolic adaptation of fish to challenging conditions, such as the increase in water temperature. The present work evaluates in ovo arginine or glutamine supplementation as enhancers of zebrafish metabolic or absorptive capacity, respectively, at optimum (28 ºC) and challenging temperatures (32 ºC) in the long-term. Growth performance, free amino acids profile, methylation index and the activity levels of digestive and intermediary metabolism enzymes were analysed to assess the metabolic plasticity induced by an early nutritional intervention. Temperature affected fish larvae growth performance. At the end of the experimental period 28 ºC-fish showed higher dry weight than 32 ºC-fish. The effects of the early supplementation were reflected in the larval free amino acids profile at the end of the experiment. Higher methylation potential was observed in the ARG-fish. In ovo amino acid supplementation modulated the metabolic response in zebrafish larvae, however, the magnitude of this effect differed according to the amino acid and the temperature. Overall, arginine supplementation enhanced carbohydrates metabolism at 32 ºC. In conclusion, the present work suggests that in ovo arginine supplementation may promote a better adaptive response to higher temperatures.
{"title":"Effects of early-life amino acids supplementation on fish responses to a thermal challenge","authors":"Carmen Navarro-Guillén, Ismael Jerez-Cepa, André Lopes, Juan Miguel Mancera, Sofia Engrola","doi":"10.1007/s00360-024-01581-1","DOIUrl":"https://doi.org/10.1007/s00360-024-01581-1","url":null,"abstract":"<p>Nutritional programming is a promising concept for promoting metabolic adaptation of fish to challenging conditions, such as the increase in water temperature. The present work evaluates in ovo arginine or glutamine supplementation as enhancers of zebrafish metabolic or absorptive capacity, respectively, at optimum (28 ºC) and challenging temperatures (32 ºC) in the long-term. Growth performance, free amino acids profile, methylation index and the activity levels of digestive and intermediary metabolism enzymes were analysed to assess the metabolic plasticity induced by an early nutritional intervention. Temperature affected fish larvae growth performance. At the end of the experimental period 28 ºC-fish showed higher dry weight than 32 ºC-fish. The effects of the early supplementation were reflected in the larval free amino acids profile at the end of the experiment. Higher methylation potential was observed in the ARG-fish. In ovo amino acid supplementation modulated the metabolic response in zebrafish larvae, however, the magnitude of this effect differed according to the amino acid and the temperature. Overall, arginine supplementation enhanced carbohydrates metabolism at 32 ºC. In conclusion, the present work suggests that in ovo arginine supplementation may promote a better adaptive response to higher temperatures.</p>","PeriodicalId":15377,"journal":{"name":"Journal of Comparative Physiology B","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1007/s00360-024-01582-0
Ignacio A. Cienfuegos, Benjamin J. Ciotti, Richard A. Billington, Paul A. Sutton, Simon G. Lamarre, Keiron P. P. Fraser
Biological processes in intertidal species follow tidal rhythms that enhance survival and fitness. Whereas tidal effects on behaviour and metabolic rates have been widely studied, impacts on other key process such as protein synthesis are still poorly understood. To date, no studies have examined the effect of immersion/emersion and tidal cycles on protein synthesis rates (ks). Patella vulgata is an intertidal limpet present in North-Eastern Atlantic rocky shores from high to low shore. Previously reported P. vulgata respiration and heart rate measurements suggest aerobic metabolism is maintained during emersion and growth rates increase from high to low shore, but whether these patterns are reflected in ks is currently unclear. Here, we measured for the first time in any intertidal organism, ks, RNA to protein ratios and RNA translational efficiency (kRNA) in P. vulgata over a full tidal cycle, at three different shore heights. ks increased during emersion (p < 0.001) and was significantly higher in low shore animals compared to the other shore heights (p < 0.001), additionally ks was negatively correlated to body mass (p = 0.002). RNA to protein ratios remained unchanged over the tidal cycle (p = 0.659) and did not vary with shore height (p = 0.591). kRNA was significantly higher during emersion and was also higher in low shore limpets (p < 0.001). This study demonstrates that P. vulgata increases ks during emersion, an important adaptation in a species that spends a considerable amount of its lifecycle emersed. Intertidal species are highly exposed to increasing air temperatures, making knowledge of physiological responses during emersion critical in understanding and forecasting climate warming impacts.
{"title":"Life in the margins: the effect of immersion/emersion and tidal cycle on the North Atlantic limpet Patella vulgata protein synthesis rates","authors":"Ignacio A. Cienfuegos, Benjamin J. Ciotti, Richard A. Billington, Paul A. Sutton, Simon G. Lamarre, Keiron P. P. Fraser","doi":"10.1007/s00360-024-01582-0","DOIUrl":"https://doi.org/10.1007/s00360-024-01582-0","url":null,"abstract":"<p>Biological processes in intertidal species follow tidal rhythms that enhance survival and fitness. Whereas tidal effects on behaviour and metabolic rates have been widely studied, impacts on other key process such as protein synthesis are still poorly understood. To date, no studies have examined the effect of immersion/emersion and tidal cycles on protein synthesis rates (<i>k</i><sub>s</sub>). <i>Patella vulgata</i> is an intertidal limpet present in North-Eastern Atlantic rocky shores from high to low shore. Previously reported <i>P. vulgata</i> respiration and heart rate measurements suggest aerobic metabolism is maintained during emersion and growth rates increase from high to low shore, but whether these patterns are reflected in <i>k</i><sub>s</sub> is currently unclear. Here, we measured for the first time in any intertidal organism, <i>k</i><sub>s</sub>, RNA to protein ratios and RNA translational efficiency (<i>k</i><sub>RNA</sub>) in <i>P. vulgata</i> over a full tidal cycle, at three different shore heights. <i>k</i><sub>s</sub> increased during emersion (<i>p</i> < 0.001) and was significantly higher in low shore animals compared to the other shore heights (<i>p</i> < 0.001), additionally <i>k</i><sub>s</sub> was negatively correlated to body mass (<i>p</i> = 0.002). RNA to protein ratios remained unchanged over the tidal cycle (<i>p</i> = 0.659) and did not vary with shore height (<i>p</i> = 0.591). <i>k</i><sub>RNA</sub> was significantly higher during emersion and was also higher in low shore limpets (<i>p</i> < 0.001). This study demonstrates that <i>P. vulgata</i> increases <i>k</i><sub>s</sub> during emersion, an important adaptation in a species that spends a considerable amount of its lifecycle emersed. Intertidal species are highly exposed to increasing air temperatures, making knowledge of physiological responses during emersion critical in understanding and forecasting climate warming impacts.</p>","PeriodicalId":15377,"journal":{"name":"Journal of Comparative Physiology B","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-27DOI: 10.1007/s00360-024-01551-7
Petteri Nieminen, Mikko A. J. Finnilä, Wilhelmiina Hämäläinen, Saara Lehtiniemi, Timo Jämsä, Juha Tuukkanen, Mervi Kunnasranta, Heikki Henttonen, Anne-Mari Mustonen
The increased limb bone density documented previously for aquatic tetrapods has been proposed to be an adaptation to overcome buoyancy during swimming and diving. It can be achieved by increasing the amount of bone deposition or by reducing the amount of bone resorption, leading to cortical thickening, loss of medullary cavity, and compaction of trabecular bone. The present study examined the effects of locomotor habit, body size, and phylogeny on the densitometric, cross-sectional, and biomechanical traits of femoral diaphysis and neck in terrestrial, semiaquatic, and aquatic carnivores, and in terrestrial and semiaquatic rodents (12 species) by using peripheral quantitative computed tomography, three-point bending, and femoral neck loading tests. Groupwise differences were analyzed with the univariate generalized linear model and the multivariate linear discriminant analysis supplemented with hierarchical clustering. While none of the individual features could separate the lifestyles or species adequately, the combinations of multiple features produced very good or excellent classifications and clusterings. In the phocid seals, the aquatic niche allowed for lower femoral bone mineral densities than expected based on the body mass alone. The semiaquatic mammals mostly had high bone mineral densities compared to the terrestrial species, which could be considered an adaptation to overcome buoyancy during swimming and shallow diving. Generally, it seems that different osteological properties at the levels of mineral density and biomechanics could be compatible with the adaptation to aquatic, semiaquatic, or terrestrial niches.
{"title":"Osteological profiling of femoral diaphysis and neck in aquatic, semiaquatic, and terrestrial carnivores and rodents: effects of body size and locomotor habits","authors":"Petteri Nieminen, Mikko A. J. Finnilä, Wilhelmiina Hämäläinen, Saara Lehtiniemi, Timo Jämsä, Juha Tuukkanen, Mervi Kunnasranta, Heikki Henttonen, Anne-Mari Mustonen","doi":"10.1007/s00360-024-01551-7","DOIUrl":"https://doi.org/10.1007/s00360-024-01551-7","url":null,"abstract":"<p>The increased limb bone density documented previously for aquatic tetrapods has been proposed to be an adaptation to overcome buoyancy during swimming and diving. It can be achieved by increasing the amount of bone deposition or by reducing the amount of bone resorption, leading to cortical thickening, loss of medullary cavity, and compaction of trabecular bone. The present study examined the effects of locomotor habit, body size, and phylogeny on the densitometric, cross-sectional, and biomechanical traits of femoral diaphysis and neck in terrestrial, semiaquatic, and aquatic carnivores, and in terrestrial and semiaquatic rodents (12 species) by using peripheral quantitative computed tomography, three-point bending, and femoral neck loading tests. Groupwise differences were analyzed with the univariate generalized linear model and the multivariate linear discriminant analysis supplemented with hierarchical clustering. While none of the individual features could separate the lifestyles or species adequately, the combinations of multiple features produced very good or excellent classifications and clusterings. In the phocid seals, the aquatic niche allowed for lower femoral bone mineral densities than expected based on the body mass alone. The semiaquatic mammals mostly had high bone mineral densities compared to the terrestrial species, which could be considered an adaptation to overcome buoyancy during swimming and shallow diving. Generally, it seems that different osteological properties at the levels of mineral density and biomechanics could be compatible with the adaptation to aquatic, semiaquatic, or terrestrial niches.</p>","PeriodicalId":15377,"journal":{"name":"Journal of Comparative Physiology B","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140812686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-23DOI: 10.1007/s00360-024-01552-6
R. J. Gonzalez, M. L. Patrick, A. L. Val
The first studies on ion regulation in fish exposed to low pH, which were inspired by the Acid Rain environmental crisis, seemed to indicate that ion transport at the gills was completely and irreversibly inhibited at pH 4.0–4.5 and below. However, work on characid fish native to the Rio Negro, a naturally acidic, blackwater tributary of the Amazon River, found that they possess ion transport mechanisms that are completely insensitive to pHs as low as 3.25. As more species were examined it appeared that pH-insensitive transport was a trait shared by many, if not most, species in the Order Characiformes. Subsequently, a few other species of fish have been shown to be able to transport ions at low pH, in particular zebrafish (Danio rerio), which show rapid recovery of Na+ uptake at pH 4.0 after initial inhibition. Measurements of rates of Na+ transport during exposure to pharmacological agents that inhibit various transport proteins suggested that characiform fish do not utilize the generally accepted mechanisms for Na+ transport that rely on some form of H+ extrusion. Examination of zebrafish transport at low pH suggest the rapid recovery may be due to a novel Na+/K+ exchanger, but after longer term exposure they may rely on a coupling of Na+/H+ exchangers and NH3 excretion. Further work is needed to clarify these mechanisms of transport and to find other acid-tolerant species to fully gain an appreciation of the diversity of physiological mechansisms involved.
{"title":"Ion uptake in naturally acidic water","authors":"R. J. Gonzalez, M. L. Patrick, A. L. Val","doi":"10.1007/s00360-024-01552-6","DOIUrl":"https://doi.org/10.1007/s00360-024-01552-6","url":null,"abstract":"<p>The first studies on ion regulation in fish exposed to low pH, which were inspired by the Acid Rain environmental crisis, seemed to indicate that ion transport at the gills was completely and irreversibly inhibited at pH 4.0–4.5 and below. However, work on characid fish native to the Rio Negro, a naturally acidic, blackwater tributary of the Amazon River, found that they possess ion transport mechanisms that are completely insensitive to pHs as low as 3.25. As more species were examined it appeared that pH-insensitive transport was a trait shared by many, if not most, species in the Order Characiformes. Subsequently, a few other species of fish have been shown to be able to transport ions at low pH, in particular zebrafish (<i>Danio rerio</i>), which show rapid recovery of Na<sup>+</sup> uptake at pH 4.0 after initial inhibition. Measurements of rates of Na<sup>+</sup> transport during exposure to pharmacological agents that inhibit various transport proteins suggested that characiform fish do not utilize the generally accepted mechanisms for Na<sup>+</sup> transport that rely on some form of H<sup>+</sup> extrusion. Examination of zebrafish transport at low pH suggest the rapid recovery may be due to a novel Na<sup>+</sup>/K<sup>+</sup> exchanger, but after longer term exposure they may rely on a coupling of Na<sup>+</sup>/H<sup>+</sup> exchangers and NH<sub>3</sub> excretion. Further work is needed to clarify these mechanisms of transport and to find other acid-tolerant species to fully gain an appreciation of the diversity of physiological mechansisms involved.</p>","PeriodicalId":15377,"journal":{"name":"Journal of Comparative Physiology B","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140806648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-23DOI: 10.1007/s00360-024-01554-4
Vincent van der Vinne, Laura E. McKillop, Sian L. Wilcox, James Cantley, Stuart N. Peirson, Steven J. Swoap, Vladyslav V. Vyazovskiy
Monitoring body temperature and energy expenditure in freely-moving laboratory mice remains a powerful methodology used widely across a variety of disciplines–including circadian biology, sleep research, metabolic phenotyping, and the study of body temperature regulation. Some of the most pronounced changes in body temperature are observed when small heterothermic species reduce their body temperature during daily torpor. Daily torpor is an energy saving strategy characterized by dramatic reductions in body temperature employed by mice and other species when challenged to meet energetic demands. Typical measurements used to describe daily torpor are the measurement of core body temperature and energy expenditure. These approaches can have drawbacks and developing alternatives for these techniques provides options that can be beneficial both from an animal-welfare and study-complexity perspective. First, this paper presents and assesses a method to estimate core body temperature based on measurements of subcutaneous body temperature, and second, a separate approach to better estimate energy expenditure during daily torpor based on core body temperature. Third, the effects of light exposure during the habitual dark phase and sleep deprivation during the light period on body temperature dynamics were tested preliminary in fed and fasted mice. Together, the here-published approaches and datasets can be used in the future to assess body temperature and metabolism in freely-moving laboratory mice.
{"title":"Methods to estimate body temperature and energy expenditure dynamics in fed and fasted laboratory mice: effects of sleep deprivation and light exposure","authors":"Vincent van der Vinne, Laura E. McKillop, Sian L. Wilcox, James Cantley, Stuart N. Peirson, Steven J. Swoap, Vladyslav V. Vyazovskiy","doi":"10.1007/s00360-024-01554-4","DOIUrl":"https://doi.org/10.1007/s00360-024-01554-4","url":null,"abstract":"<p>Monitoring body temperature and energy expenditure in freely-moving laboratory mice remains a powerful methodology used widely across a variety of disciplines–including circadian biology, sleep research, metabolic phenotyping, and the study of body temperature regulation. Some of the most pronounced changes in body temperature are observed when small heterothermic species reduce their body temperature during daily torpor. Daily torpor is an energy saving strategy characterized by dramatic reductions in body temperature employed by mice and other species when challenged to meet energetic demands. Typical measurements used to describe daily torpor are the measurement of core body temperature and energy expenditure. These approaches can have drawbacks and developing alternatives for these techniques provides options that can be beneficial both from an animal-welfare and study-complexity perspective. First, this paper presents and assesses a method to estimate core body temperature based on measurements of subcutaneous body temperature, and second, a separate approach to better estimate energy expenditure during daily torpor based on core body temperature. Third, the effects of light exposure during the habitual dark phase and sleep deprivation during the light period on body temperature dynamics were tested preliminary in fed and fasted mice. Together, the here-published approaches and datasets can be used in the future to assess body temperature and metabolism in freely-moving laboratory mice.</p>","PeriodicalId":15377,"journal":{"name":"Journal of Comparative Physiology B","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-16DOI: 10.1007/s00360-024-01547-3
Orianna A. Duh, M. Danielle McDonald
Neuroepithelial cells (NECs) within the fish gill contain the monoamine neurochemical serotonin (5-HT), sense changes in the partial pressure of oxygen (PO2) in the surrounding water and blood, and initiate the cardiovascular and ventilatory responses to hypoxia. The distribution of neuroepithelial cells (NECs) within the gill is known for some fish species but not for the Gulf toadfish, Opsanus beta, a fish that has always been considered hypoxia tolerant. Furthermore, whether NEC size, number, or distribution changes after chronic exposure to hypoxia, has never been tested. We hypothesize that toadfish NECs will respond to hypoxia with an increase in NEC size, number, and a change in distribution. Juvenile toadfish (N = 24) were exposed to either normoxia (21.4 ± 0.0 kPa), mild hypoxia (10.2 ± 0.3 kPa), or severe hypoxia (3.1 ± 0.2 kPa) for 7 days and NEC size, number, and distribution for each O2 regime were measured. Under normoxic conditions, juvenile toadfish have similar NEC size, number, and distribution as other fish species with NECs along their filaments but not throughout the lamellae. The distribution of NECs did not change with hypoxia exposure. Mild hypoxia exposure had no effect on NEC size or number, but fish exposed to severe hypoxia had a higher NEC density (# per mm filament) compared to mild hypoxia-exposed fish. Fish exposed to severe hypoxia also had longer gill filament lengths that could not be explained by body weight. These results point to signs of phenotypic plasticity in these juvenile, lab-bred fish with no previous exposure to hypoxia and a strategy to deal with hypoxia exposure that differs in toadfish compared to other fish.
鱼鳃内的神经上皮细胞(NECs)含有单胺类神经化学物质血清素(5-HT),能感知周围水体和血液中氧分压(PO2)的变化,并启动心血管和呼吸系统对缺氧的反应。已知一些鱼类鳃内神经上皮细胞(NEC)的分布情况,但一直被认为耐缺氧的海湾蟾蜍鱼(Opsanus beta)却不知道。此外,NEC 的大小、数量或分布是否会在长期暴露于低氧环境后发生变化,也从未进行过测试。我们假设,蟾蜍鱼的 NEC 会对缺氧做出反应,NEC 的大小、数量会增加,分布也会发生变化。将幼年蟾蜍鱼(N = 24)暴露在常氧(21.4 ± 0.0 kPa)、轻度缺氧(10.2 ± 0.3 kPa)或严重缺氧(3.1 ± 0.2 kPa)条件下 7 天,并测量每种氧气条件下 NEC 的大小、数量和分布。在常氧条件下,蟾蜍幼鱼的 NEC 大小、数量和分布与其他鱼类相似,NEC 沿着鱼丝分布,但不是遍布整个薄片。NEC的分布不随缺氧暴露而变化。轻度缺氧对 NEC 的大小和数量没有影响,但与轻度缺氧鱼类相比,严重缺氧鱼类的 NEC 密度(每毫米鱼丝数量)更高。暴露于严重缺氧的鱼的鳃丝长度也更长,但这无法用体重来解释。这些结果表明,在这些实验室培育的幼鱼中存在表型可塑性的迹象,它们以前从未暴露于缺氧环境中,而且蟾蜍鱼与其他鱼类相比,其应对缺氧环境的策略有所不同。
{"title":"Gulf toadfish (Opsanus beta) gill neuroepithelial cells in response to hypoxia exposure","authors":"Orianna A. Duh, M. Danielle McDonald","doi":"10.1007/s00360-024-01547-3","DOIUrl":"https://doi.org/10.1007/s00360-024-01547-3","url":null,"abstract":"<p>Neuroepithelial cells (NECs) within the fish gill contain the monoamine neurochemical serotonin (5-HT), sense changes in the partial pressure of oxygen (PO<sub>2</sub>) in the surrounding water and blood, and initiate the cardiovascular and ventilatory responses to hypoxia. The distribution of neuroepithelial cells (NECs) within the gill is known for some fish species but not for the Gulf toadfish, <i>Opsanus beta</i>, a fish that has always been considered hypoxia tolerant. Furthermore, whether NEC size, number, or distribution changes after chronic exposure to hypoxia, has never been tested. We hypothesize that toadfish NECs will respond to hypoxia with an increase in NEC size, number, and a change in distribution. Juvenile toadfish (<i>N</i> = 24) were exposed to either normoxia (21.4 ± 0.0 kPa), mild hypoxia (10.2 ± 0.3 kPa), or severe hypoxia (3.1 ± 0.2 kPa) for 7 days and NEC size, number, and distribution for each O<sub>2</sub> regime were measured. Under normoxic conditions, juvenile toadfish have similar NEC size, number, and distribution as other fish species with NECs along their filaments but not throughout the lamellae. The distribution of NECs did not change with hypoxia exposure. Mild hypoxia exposure had no effect on NEC size or number, but fish exposed to severe hypoxia had a higher NEC density (# per mm filament) compared to mild hypoxia-exposed fish. Fish exposed to severe hypoxia also had longer gill filament lengths that could not be explained by body weight. These results point to signs of phenotypic plasticity in these juvenile, lab-bred fish with no previous exposure to hypoxia and a strategy to deal with hypoxia exposure that differs in toadfish compared to other fish.</p>","PeriodicalId":15377,"journal":{"name":"Journal of Comparative Physiology B","volume":"301 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1007/s00360-024-01546-4
B. J. Klüg-Baerwald, C. L. Lausen, S. M. Burns, R. M. Brigham
Winter energy stores are finite and factors influencing patterns of activity are important for overwintering energetics and survival. Hibernation patterns (e.g., torpor bout duration and arousal frequency) often depend on microclimate, with more stable hibernacula associated with greater energy savings than less stable hibernacula. We monitored hibernation patterns of individual big brown bats (Eptesicus fuscus; Palisot de Beauvois, 1796) overwintering in rock-crevices that are smaller, drier, and less thermally stable than most known cave hibernacula. While such conditions would be predicted to increase arousal frequency in many hibernators, we did not find support for this. We found that bats were insensitive to changes in hibernacula microclimate (temperature and humidity) while torpid. We also found that the probability of arousal from torpor remained under circadian influence, likely because throughout the winter during arousals, bats commonly exit their hibernacula. We calculated that individuals spend most of their energy on maintaining a torpid body temperature a few degrees above the range of ambient temperatures during steady-state torpor, rather than during arousals as is typical of other small mammalian hibernators. Flight appears to be an important winter activity that may expedite the benefits of euthermic periods and allow for short, physiologically effective arousals. Overall, we found that big brown bats in rock crevices exhibit different hibernation patterns than conspecifics hibernating in buildings and caves.
冬季能量储存是有限的,影响活动模式的因素对越冬能量和存活非常重要。冬眠模式(如冬眠持续时间和唤醒频率)通常取决于小气候,较稳定的冬眠比不太稳定的冬眠节省更多能量。我们监测了在岩石裂缝中越冬的大棕蝠(Eptesicus fuscus; Palisot de Beauvois, 1796)个体的冬眠模式,这些岩石裂缝比大多数已知的洞穴冬眠场所更小、更干燥、热稳定性更差。虽然这种条件会增加许多冬眠者的唤醒频率,但我们并没有发现支持这种说法的证据。我们发现,蝙蝠在休眠状态下对冬眠洞穴微气候(温度和湿度)的变化并不敏感。我们还发现,蝙蝠从冬眠中唤醒的概率仍然受到昼夜节律的影响,这可能是因为在整个冬季唤醒期间,蝙蝠通常会离开冬眠穴。根据我们的计算,蝙蝠个体在稳态冬眠期间将大部分能量用于维持高于环境温度几度的冬眠体温,而不是像其他小型哺乳动物那样在唤醒期间冬眠。飞行似乎是一种重要的冬季活动,它可以加快热休眠期的效益,并允许短时间的、生理上有效的唤醒。总之,我们发现岩石缝隙中的大棕蝠与在建筑物和洞穴中冬眠的同类表现出不同的冬眠模式。
{"title":"Physiological and behavioural adaptations by big brown bats hibernating in dry rock crevices","authors":"B. J. Klüg-Baerwald, C. L. Lausen, S. M. Burns, R. M. Brigham","doi":"10.1007/s00360-024-01546-4","DOIUrl":"https://doi.org/10.1007/s00360-024-01546-4","url":null,"abstract":"<p>Winter energy stores are finite and factors influencing patterns of activity are important for overwintering energetics and survival. Hibernation patterns (e.g., torpor bout duration and arousal frequency) often depend on microclimate, with more stable hibernacula associated with greater energy savings than less stable hibernacula. We monitored hibernation patterns of individual big brown bats (<i>Eptesicus fuscus</i>; Palisot de Beauvois, 1796) overwintering in rock-crevices that are smaller, drier, and less thermally stable than most known cave hibernacula. While such conditions would be predicted to increase arousal frequency in many hibernators, we did not find support for this. We found that bats were insensitive to changes in hibernacula microclimate (temperature and humidity) while torpid. We also found that the probability of arousal from torpor remained under circadian influence, likely because throughout the winter during arousals, bats commonly exit their hibernacula. We calculated that individuals spend most of their energy on maintaining a torpid body temperature a few degrees above the range of ambient temperatures during steady-state torpor, rather than during arousals as is typical of other small mammalian hibernators. Flight appears to be an important winter activity that may expedite the benefits of euthermic periods and allow for short, physiologically effective arousals. Overall, we found that big brown bats in rock crevices exhibit different hibernation patterns than conspecifics hibernating in buildings and caves.</p>","PeriodicalId":15377,"journal":{"name":"Journal of Comparative Physiology B","volume":"440 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-07DOI: 10.1007/s00360-024-01550-8
Abstract
The fish gill is a multifunctional organ that is important in multiple physiological processes such as gas transfer, ionoregulation, and chemoreception. This characteristic organ of fishes has received much attention, yet an often-overlooked point is that larval fishes in most cases do not have a fully developed gill, and thus larval gills do not function identically as adult gills. In addition, large changes associated with gas exchange and ionoregulation happen in gills during the larval phase, leading to the oxygen and ionoregulatory hypotheses examining the environmental constraint that resulted in the evolution of gills. This review thus focuses exclusively on the larval fish gill of teleosts, summarizing the development of teleost larval fish gills and its function in gas transfer, ionoregulation, and chemoreception, and comparing and contrasting it to adult gills where applicable, while providing some insight into the oxygen vs ionoregulatory hypotheses debate.
{"title":"Structure and function of the larval teleost fish gill","authors":"","doi":"10.1007/s00360-024-01550-8","DOIUrl":"https://doi.org/10.1007/s00360-024-01550-8","url":null,"abstract":"<h3>Abstract</h3> <p>The fish gill is a multifunctional organ that is important in multiple physiological processes such as gas transfer, ionoregulation, and chemoreception. This characteristic organ of fishes has received much attention, yet an often-overlooked point is that larval fishes in most cases do not have a fully developed gill, and thus larval gills do not function identically as adult gills. In addition, large changes associated with gas exchange and ionoregulation happen in gills during the larval phase, leading to the oxygen and ionoregulatory hypotheses examining the environmental constraint that resulted in the evolution of gills. This review thus focuses exclusively on the larval fish gill of teleosts, summarizing the development of teleost larval fish gills and its function in gas transfer, ionoregulation, and chemoreception, and comparing and contrasting it to adult gills where applicable, while providing some insight into the oxygen vs ionoregulatory hypotheses debate.</p>","PeriodicalId":15377,"journal":{"name":"Journal of Comparative Physiology B","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140597621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04DOI: 10.1007/s00360-024-01549-1
Abstract
The innate immune system, a cornerstone for organismal resilience against environmental and microbial insults, is highly conserved across the evolutionary spectrum, underpinning its pivotal role in maintaining homeostasis and ensuring survival. This review explores the evolutionary parallels between mammalian and insect innate immune systems, illuminating how investigations into these disparate immune landscapes have been reciprocally enlightening. We further delve into how advancements in mammalian immunology have enriched our understanding of insect immune responses, highlighting the intertwined evolutionary narratives and the shared molecular lexicon of immunity across these organisms. Therefore, this review posits a holistic understanding of innate immune mechanisms, including immunometabolism, autophagy and cell death. The examination of how emerging insights into mammalian and vertebrate immunity inform our understanding of insect immune responses and their implications for vector-borne disease transmission showcases the imperative for a nuanced comprehension of innate immunity’s evolutionary tale. This understanding is quintessential for harnessing innate immune mechanisms' potential in devising innovative disease mitigation strategies and promoting organismal health across the animal kingdom.
{"title":"Evolution of innate immunity: lessons from mammalian models shaping our current view of insect immunity","authors":"","doi":"10.1007/s00360-024-01549-1","DOIUrl":"https://doi.org/10.1007/s00360-024-01549-1","url":null,"abstract":"<h3>Abstract</h3> <p>The innate immune system, a cornerstone for organismal resilience against environmental and microbial insults, is highly conserved across the evolutionary spectrum, underpinning its pivotal role in maintaining homeostasis and ensuring survival. This review explores the evolutionary parallels between mammalian and insect innate immune systems, illuminating how investigations into these disparate immune landscapes have been reciprocally enlightening. We further delve into how advancements in mammalian immunology have enriched our understanding of insect immune responses, highlighting the intertwined evolutionary narratives and the shared molecular lexicon of immunity across these organisms. Therefore, this review posits a holistic understanding of innate immune mechanisms, including immunometabolism, autophagy and cell death. The examination of how emerging insights into mammalian and vertebrate immunity inform our understanding of insect immune responses and their implications for vector-borne disease transmission showcases the imperative for a nuanced comprehension of innate immunity’s evolutionary tale. This understanding is quintessential for harnessing innate immune mechanisms' potential in devising innovative disease mitigation strategies and promoting organismal health across the animal kingdom.</p>","PeriodicalId":15377,"journal":{"name":"Journal of Comparative Physiology B","volume":"96 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140597775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}