SymbolicAI: A framework for logic-based approaches combining generative models and solvers

Marius-Constantin Dinu, Claudiu Leoveanu-Condrei, Markus Holzleitner, Werner Zellinger, Sepp Hochreiter
{"title":"SymbolicAI: A framework for logic-based approaches combining generative models and solvers","authors":"Marius-Constantin Dinu, Claudiu Leoveanu-Condrei, Markus Holzleitner, Werner Zellinger, Sepp Hochreiter","doi":"arxiv-2402.00854","DOIUrl":null,"url":null,"abstract":"We introduce SymbolicAI, a versatile and modular framework employing a\nlogic-based approach to concept learning and flow management in generative\nprocesses. SymbolicAI enables the seamless integration of generative models\nwith a diverse range of solvers by treating large language models (LLMs) as\nsemantic parsers that execute tasks based on both natural and formal language\ninstructions, thus bridging the gap between symbolic reasoning and generative\nAI. We leverage probabilistic programming principles to tackle complex tasks,\nand utilize differentiable and classical programming paradigms with their\nrespective strengths. The framework introduces a set of polymorphic,\ncompositional, and self-referential operations for data stream manipulation,\naligning LLM outputs with user objectives. As a result, we can transition\nbetween the capabilities of various foundation models endowed with zero- and\nfew-shot learning capabilities and specialized, fine-tuned models or solvers\nproficient in addressing specific problems. In turn, the framework facilitates\nthe creation and evaluation of explainable computational graphs. We conclude by\nintroducing a quality measure and its empirical score for evaluating these\ncomputational graphs, and propose a benchmark that compares various\nstate-of-the-art LLMs across a set of complex workflows. We refer to the\nempirical score as the \"Vector Embedding for Relational Trajectory Evaluation\nthrough Cross-similarity\", or VERTEX score for short. The framework codebase\nand benchmark are linked below.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.00854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce SymbolicAI, a versatile and modular framework employing a logic-based approach to concept learning and flow management in generative processes. SymbolicAI enables the seamless integration of generative models with a diverse range of solvers by treating large language models (LLMs) as semantic parsers that execute tasks based on both natural and formal language instructions, thus bridging the gap between symbolic reasoning and generative AI. We leverage probabilistic programming principles to tackle complex tasks, and utilize differentiable and classical programming paradigms with their respective strengths. The framework introduces a set of polymorphic, compositional, and self-referential operations for data stream manipulation, aligning LLM outputs with user objectives. As a result, we can transition between the capabilities of various foundation models endowed with zero- and few-shot learning capabilities and specialized, fine-tuned models or solvers proficient in addressing specific problems. In turn, the framework facilitates the creation and evaluation of explainable computational graphs. We conclude by introducing a quality measure and its empirical score for evaluating these computational graphs, and propose a benchmark that compares various state-of-the-art LLMs across a set of complex workflows. We refer to the empirical score as the "Vector Embedding for Relational Trajectory Evaluation through Cross-similarity", or VERTEX score for short. The framework codebase and benchmark are linked below.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SymbolicAI:结合生成模型和求解器的基于逻辑的方法框架
我们介绍的 SymbolicAI 是一个多功能模块化框架,它采用基于逻辑的方法来进行生成过程中的概念学习和流程管理。SymbolicAI 将大型语言模型(LLM)视为基于自然语言和形式语言指令执行任务的语义解析器,从而弥合了符号推理与生成式人工智能之间的差距,实现了生成模型与各种求解器的无缝集成。我们利用概率编程原理来处理复杂任务,并利用可微编程和经典编程范式各自的优势。该框架为数据流操作引入了一系列多态、组合和自反操作,使 LLM 输出与用户目标保持一致。因此,我们可以在具有零学习能力和少量学习能力的各种基础模型与专门的微调模型或擅长解决特定问题的求解器之间进行转换。反过来,该框架也有助于创建和评估可解释的计算图。最后,我们介绍了用于评估这些计算图的质量度量及其经验分数,并提出了一个基准,用于在一组复杂的工作流中比较各种最先进的 LLM。我们将经验分数称为 "通过交叉相似性进行关系轨迹评估的矢量嵌入",简称 VERTEX 分数。框架代码库和基准链接如下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1