Symbolic Regression with a Learned Concept Library

Arya Grayeli, Atharva Sehgal, Omar Costilla-Reyes, Miles Cranmer, Swarat Chaudhuri
{"title":"Symbolic Regression with a Learned Concept Library","authors":"Arya Grayeli, Atharva Sehgal, Omar Costilla-Reyes, Miles Cranmer, Swarat Chaudhuri","doi":"arxiv-2409.09359","DOIUrl":null,"url":null,"abstract":"We present a novel method for symbolic regression (SR), the task of searching\nfor compact programmatic hypotheses that best explain a dataset. The problem is\ncommonly solved using genetic algorithms; we show that we can enhance such\nmethods by inducing a library of abstract textual concepts. Our algorithm,\ncalled LaSR, uses zero-shot queries to a large language model (LLM) to discover\nand evolve concepts occurring in known high-performing hypotheses. We discover\nnew hypotheses using a mix of standard evolutionary steps and LLM-guided steps\n(obtained through zero-shot LLM queries) conditioned on discovered concepts.\nOnce discovered, hypotheses are used in a new round of concept abstraction and\nevolution. We validate LaSR on the Feynman equations, a popular SR benchmark,\nas well as a set of synthetic tasks. On these benchmarks, LaSR substantially\noutperforms a variety of state-of-the-art SR approaches based on deep learning\nand evolutionary algorithms. Moreover, we show that LaSR can be used to\ndiscover a novel and powerful scaling law for LLMs.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"100 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel method for symbolic regression (SR), the task of searching for compact programmatic hypotheses that best explain a dataset. The problem is commonly solved using genetic algorithms; we show that we can enhance such methods by inducing a library of abstract textual concepts. Our algorithm, called LaSR, uses zero-shot queries to a large language model (LLM) to discover and evolve concepts occurring in known high-performing hypotheses. We discover new hypotheses using a mix of standard evolutionary steps and LLM-guided steps (obtained through zero-shot LLM queries) conditioned on discovered concepts. Once discovered, hypotheses are used in a new round of concept abstraction and evolution. We validate LaSR on the Feynman equations, a popular SR benchmark, as well as a set of synthetic tasks. On these benchmarks, LaSR substantially outperforms a variety of state-of-the-art SR approaches based on deep learning and evolutionary algorithms. Moreover, we show that LaSR can be used to discover a novel and powerful scaling law for LLMs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用学习概念库进行符号回归
我们为符号回归(SR)提出了一种新方法,符号回归的任务是搜索最能解释数据集的简洁程序假设。这个问题通常使用遗传算法来解决;我们的研究表明,我们可以通过诱导抽象文本概念库来增强这种方法。我们的算法称为 LaSR,它使用对大型语言模型 (LLM) 的零点查询来发现和演化出现在已知高效假设中的概念。我们使用标准进化步骤和 LLM 引导步骤(通过零次 LLM 查询获得)的组合,以发现的概念为条件,发现新的假设。我们在费曼方程(一种流行的 SR 基准)和一组合成任务上验证了 LaSR。在这些基准测试中,LaSR 的性能大大优于各种基于深度学习和进化算法的先进 SR 方法。此外,我们还展示了 LaSR 可用于发现 LLMs 的新颖而强大的缩放规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1