{"title":"Automated Identification of Ordered Phases for Simulation Studies of Block Copolymers","authors":"Yu-Chen Zhang, Wei-Ling Huang, Yi-Xin Liu","doi":"10.1007/s10118-024-3084-x","DOIUrl":null,"url":null,"abstract":"<div><p>In unit cell simulations, identification of ordered phases in block copolymers (BCPs) is a tedious and time-consuming task, impeding the advancement of more streamlined and potentially automated research workflows. In this study, we propose a scattering-based automated identification strategy (SAIS) for characterization and identification of ordered phases of BCPs based on their computed scattering patterns. Our approach leverages the scattering theory of perfect crystals to efficiently compute the scattering patterns of periodic morphologies in a unit cell. In the first stage of the SAIS, phases are identified by comparing reflection conditions at a sequence of Miller indices. To confirm or refine the identification results of the first stage, the second stage of the SAIS introduces a tailored residual between the test phase and each of the known candidate phases. Furthermore, our strategy incorporates a variance-like criterion to distinguish background species, enabling its extension to multi-species BCP systems. It has been demonstrated that our strategy achieves exceptional accuracy and robustness while requiring minimal computational resources. Additionally, the approach allows for real-time expansion and improvement to the candidate phase library, facilitating the development of automated research workflows for designing specific ordered structures and discovering new ordered phases in BCPs.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3084-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In unit cell simulations, identification of ordered phases in block copolymers (BCPs) is a tedious and time-consuming task, impeding the advancement of more streamlined and potentially automated research workflows. In this study, we propose a scattering-based automated identification strategy (SAIS) for characterization and identification of ordered phases of BCPs based on their computed scattering patterns. Our approach leverages the scattering theory of perfect crystals to efficiently compute the scattering patterns of periodic morphologies in a unit cell. In the first stage of the SAIS, phases are identified by comparing reflection conditions at a sequence of Miller indices. To confirm or refine the identification results of the first stage, the second stage of the SAIS introduces a tailored residual between the test phase and each of the known candidate phases. Furthermore, our strategy incorporates a variance-like criterion to distinguish background species, enabling its extension to multi-species BCP systems. It has been demonstrated that our strategy achieves exceptional accuracy and robustness while requiring minimal computational resources. Additionally, the approach allows for real-time expansion and improvement to the candidate phase library, facilitating the development of automated research workflows for designing specific ordered structures and discovering new ordered phases in BCPs.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.